Flavour tagging performance of the New CLIC Detector

Ignacio Garcia **CLIC** detector Software Meeting 17/10/2017

Statistical uncertainty

Double_t TEfficiency::Normal (Double	_t total,
Double	t passed
Double	
Double	_t level,
Bool_t	bUpper
)	
· · · · ·	

Returns the confidence limits for the efficiency supposing that the efficiency follows a normal distribution with the rms below.

Parameters

- [in] total number of total events
- [in] passed 0 <= number of passed events <= total
- [in] level confidence level
- [in] **bUpper**
- true upper boundary is returned
- · false lower boundary is returned

Calculation:

$$\varepsilon = \frac{passed}{total}$$
$$\sigma_{\varepsilon} = \sqrt{\frac{\varepsilon(1-\varepsilon)}{total}}$$
$$\varepsilon_{low} = \varepsilon + \Phi^{-1}(\frac{le}{total})$$

Definition at line 2733 of file TEfficiency.cxx.

Ratio = A/B -> δ (Ratio) = Ratio*sqrt[(δ A/A)^2 + (δ B/B)^2]

Statistical uncertainty

e+e- -> dijets at 500GeV No $\gamma\gamma$ -> hadrons

Conformal vs Truth Tracking

e+e- -> dijets at 500GeV No γγ -> hadrons

