Transverse Beam Stability with Realistic Longitudinal Profiles and Contribution from Space Charge

Kevin Li and Adrian Oeftiger

CERN - HL-LHC WP2 Meeting 31 October 2017

Motivation

Study based on Elena Shaposhnikova's Jan'17 WP2 presentation \nearrow : after longitudinal blow-up (during ramp), we have

- q-Gaussian longitudinal bunch profile
- hole in synchrotron frequency distribution

central goals

Investigate impact on head-tail instabilities at HL-LHC by

- longitudinal distribution
- direct space charge

Content of this talk:

- stationary macro-particle distributions for longitudinal
 - q-Gaussian distribution (without hole)
 - hollow distribution from measured LHC tomogram
- chromaticity scans for head-tail instabilities at flat-top
 - → compare thermal, *q*-Gaussian and hollow distribution
- ontribution to stability from space charge (TMCI, head-tail)

Non-Gaussian Bunch Profile

Flat-bottom and initial flat-top: non-Gaussian longitudinal bunch profile

Elena Shaposhnikova: q-Gaussian bunch profile Bunch profiles in a single RF system (measured and fitted) Binomial line density distribution $\lambda(t) = \lambda_0(1 - 4t^2/\tau^2)^{2.5}$ fits well present LHC bunches (in a single RF) on flat bottom and at beginning of flat top (after controlled emittance with band-limited noise during ramp) 450 GeV 1.5 - Binomial n=2 - Binomial n=2 1.0 1.0 0.5 0.5 -1.5 -0.5 0.0 Time [ns] Time [ns] Real bunch tails are more populated (also visible from the PD Schottky) Profiles become Gaussian after a few hours due to IBS and SR

⇒ consider equal Full Width at Half Maximum ("[longitudinal] instability thresholds scale with the FWHM values")

Hole in Synchrotron Frequency Distribution

Not only non-Gaussian bunch profile – also **depleted bunch centre**:

Schottky Spectrum: "Hole"

(a) "usual" Schottky spectrum (image from Juan Müller's thesis)

(b) Schottky spectrum with hole (after longitudinal blow-up)

⇒ slightly hollow phase space distribution can explain "missing" Schottky signal around linear synchrotron frequency

1. stationary longitudinal

macro-particle distributions

FWHM Equivalence

Generate macro-particles matched to the RF bucket with

- (i) thermal distribution: $f(\mathcal{H}) \propto \exp(-\mathcal{H}/\mathcal{H}_0)$
- (ii) *q*-Gaussian distribution (for q = 3/5): $f(\mathcal{H}) \propto \left(1 \frac{\mathcal{H}}{\mathcal{H}_0}\right)^2$
- (iii) hollow distribution reconstructed from tomography with equal FWHM via¹

$$\sigma_z^{\mathsf{RMS}}\Big|_{q\text{-Gaussian}} \stackrel{!}{=} 0.846 \cdot \sigma_z^{\mathsf{RMS}}\Big|_{\mathsf{thermal}}$$

5 of 20

 $^{^{1}}$ cf. e.g. R. Tomás' & L. Medina's WP2 talk Mar'17 \diagup or their IPAC'17 paper \diagup or S. Papadopoulou's IPAC'17 paper /

FWHM Equivalence

Generate macro-particles matched to the RF bucket with

- (i) thermal distribution: $f(\mathcal{H}) \propto \exp(-\mathcal{H}/\mathcal{H}_0)$
- (ii) q-Gaussian distribution (for q = 3/5): $f(\mathcal{H}) \propto \left(1 \frac{\mathcal{H}}{\mathcal{H}_0}\right)^2$
- (iii) hollow distribution reconstructed from tomography with equal FWHM via¹

$$\sigma_z^{\mathsf{RMS}}\Big|_{q\text{-Gaussian}} \stackrel{!}{=} 0.846 \cdot \sigma_z^{\mathsf{RMS}}\Big|_{\mathsf{thermal}}$$

 1 cf. e.g. R. Tomás' & L. Medina's WP2 talk Mar'17 \diagup or their IPAC'17 paper \diagup or S. Papadopoulou's IPAC'17 paper /

Tomography at 6.5 TeV

Measurement by Juan Müller et al., tomography by Steven Hancock:

- context: first tomography experiences in LHC!
- turn-by-turn bunch profile data over 1000 turns
- $E_0 = 6.5 \,\text{TeV}$: flat-top immediately after the ramp
- $V_{RF} = 10 \,\text{MV}, h = 35640$
- → by-product: nice measurement of the longitudinal distribution directly after the longitudinal blow-up

• extract $f(\mathcal{H})$ from tomo: $\mathcal{H} = -\frac{1}{2}\eta\beta c\delta^2$

- extract $f(\mathcal{H})$ from tomo: $\mathcal{H} = -\frac{1}{2}\eta\beta c\delta^2$
- ② analytically match to $\sigma_z^{\rm RMS}|_{q\text{-Gaussian}} \stackrel{!}{=} 0.846 \cdot \sigma_z^{\rm RMS}|_{\rm thermal} = 8.1\,\mathrm{cm}$

- extract $f(\mathcal{H})$ from tomo: $\mathcal{H} = -\frac{1}{2}\eta\beta c\delta^2$
- analytically match to $\sigma_z^{\text{RMS}}|_{a\text{-Gaussian}} \stackrel{!}{=} 0.846 \cdot \sigma_z^{\text{RMS}}|_{\text{thermal}} = 8.1 \, \text{cm}$
- Markov chain Monte-Carlo sampling for macro-particles

- extract $f(\mathcal{H})$ from tomo: $\mathcal{H} = -\frac{1}{2}\eta\beta c\delta^2$
- ② analytically match to $\sigma_z^{\rm RMS}|_{q\text{-Gaussian}}\stackrel{!}{=}0.846\cdot\sigma_z^{\rm RMS}|_{\rm thermal}=8.1\,{\rm cm}$
- Markov chain Monte-Carlo sampling for macro-particles
- indeed, "hole" in synchrotron frequency distribution reproduced

Longitudinal Macro-particle Distributions

300

150

$$f(\mathcal{H}) \propto \exp\left(-\frac{\mathcal{H}}{\mathcal{H}_0}\right)$$

-0.3-0.2-0.10.0 0.1 0.2 0.3

q-Gaussian distribution

hollow distribution

from tomogram

All phase space distributions FWHM equivalent:

- thermal distribution \longrightarrow RMS bunch length: $\sigma_z = 8.1 \, \text{cm}$
- q-Gauss distribution \longrightarrow RMS bunch length: $\sigma_z = 6.9$ cm
- hollow distribution \longrightarrow RMS bunch length: $\sigma_z = 6.9$ cm

-0.2

-0.3

2. chromaticity scans

keep in mind: 26 days per chromaticity scan (each plot!) on the GPU (i.e. ≈ 8 months on CPU e.g. on lxplus)

PyHEADTAIL parameters

parameter	value
intensity	$N = 2.3 \times 10^{11}$
chromaticity	$-10 \le Q_{x,y}' \le 40$
damping rate	50 turns
RF voltage	$V_{RF} = 16 \mathrm{MV}$
flat-top energy	7 TeV
momentum compaction	$\alpha_c = 53.86^{-2}$
transverse tunes	$(Q_x, Q_y) = (62.31, 60.32)$
synchrotron tune	$Q_s \approx 2.12 \times 10^{-3}$
IP beta function	$\beta^* = 15 \text{cm}$

- → stationary ('matched') longitudinal distributions
- → single bunch, non-linear synchrotron motion
- → ideal transverse damper model
- → no octupole currents
- → current impedance model with crab cavities from gitlab (Mar'17) /
- → 600 kturns tracking

$\sigma_z^{\rm Gauss}$	longitudinal distribution
9 cm	thermal/Gaussian

Observations

- $Q'_{x,y} \approx 0$ (radial mode 1): peak rise time grows from thermal via q-Gauss towards hollow (i.e. directly after ramp worse than later at flat-top, \longrightarrow re-thermalisation of distribution)
- $Q'_{x,y} \approx 10$ (radial mode 2): no big change for peak rise time, but considerable shift in chroma
- $Q'_{x,y} > 20$ (radial mode 3): absent for thermal; q-Gauss smaller chroma range than hollow
- $Q'_{x,y} \gtrsim 30$ (radial mode 4): lower chroma region edge shifts higher from thermal via q-Gauss towards hollow

Conclusion: strong dependency of rise time on longitudinal distribution for

- \implies destabilising effect of damper (head-tail instability around $Q'_{x,y} = 0$)
- \implies fixed chromaticity in the operational area around $Q'_{x,y} \approx 10 \pm 5$

Destabilising Effect of Damper

Fixed Chromaticity in LHC Operational Area

Further Results

Further chromaticity scans for thermal distribution:

- only dipolar wakes vs. incl. quadrupolar wakes: additional unstable mode in horizontal plane at high chroma $Q'_{x,y} \approx 30$
- impedance model update: $\mathcal{O}(10\%)$ higher growth rates compared to before detailed crab cavity modelling²
- pre-squeeze vs. full squeeze: $\mathcal{O}(10\%)$ higher growth rates comparing $\beta^* = 48 \, \text{cm}$ to $\beta^* = 15 \, \text{cm}$, larger instability range
- ⇒ for details cf. 110th HSC section meeting presentation (see last slide)

²cf. e.g. studies for RFQ or LIU-SPS Wide-band Feedback Review /

3. stability from space charge

Physical Parameters for PyHEADTAIL

parameter	value
normalised transverse RMS emittances	$\epsilon_{x,y} = 2.5 \mathrm{mm}\mathrm{mrad}$
longitudinal 4 σ emittance	$\epsilon_z = 0.69 \text{eV} \text{s}$
RMS bunch length	$\sigma_Z = 10.4 \mathrm{cm}$
injection energy	$E_0 = 450 \text{GeV}$
transverse tunes	(62.28,60.31)
synchrotron tune	$Q_s \approx 5.862 \times 10^{-3}$
momentum compaction	$\alpha_c = 53.83^{-2}$
RF voltage (200 MHz cavities)	$V_{RF} = 8 \mathrm{MV}$
direct space charge tune spread	$\mathcal{O}(10^{-3})$

- → single bunch with matched thermal longitudinal distribution
- → non-linear synchrotron motion in single-harmonic RF bucket
- → no transverse damper (ADT), no Landau octupole currents
- → linear betatron tracking, no machine non-linearities
- → current impedance model with crab cavities from gitlab (Mar'17) /

Transverse 0 & -1 Mode Coupling Instability

Transverse 0 & -1 Mode Coupling Instability

without space charge

 \implies modes 0 and -1 couple around TMCI threshold intensity $N_{\text{TMCI,th}} \approx 6 \times 10^{11} \text{ ppb}$

with self-consistent space charge

- ⇒ stable over simulation run of 50 000 turns, no mode coupling

Head-Tail Instability + Space Charge

Fix $Q'_{x,y} = 5$ and $N = 4 \times 10^{11} \text{ ppb} < N_{\text{TMCI,th}}$:

Head-Tail Instability + Space Charge

Fix $Q'_{x,y} = 5$ and $N = 4 \times 10^{11} \, \mathrm{ppb} < N_{\mathrm{TMCl,th}}$:

Head-Tail Instability + Space Charge

Fix $Q'_{x,y} = 5$ and $N = 4 \times 10^{11} \, \mathrm{ppb} < N_{\mathrm{TMCl,th}}$:

 \Rightarrow direct space charge stabilises mode m = -1 at HL-LHC injection

Space Charge Limit

- fixing the intensity N and increasing the transverse emittances $\epsilon_{x,v}$
 - \rightarrow weaker space charge contribution $\Delta Q_{x,y}^{SC} \propto \frac{N}{\gamma^2 \epsilon_{x,y}}$
 - \implies between 20 and 40 mm mrad: head-tail instability m = -1 recovered
- first potential experimental evidence in 2010
 - no ADT, no Landau octupoles: stable beam at LHC injection
 - during ramp: m = -1 head-tail instability
 - \implies possible explanation: $\Delta Q_{x,y}^{SC} \propto 1/\gamma^2$ shrinks during ramp until Landau damping from space charge is lost

Figure: flat-top measurements of said head-tail instability at $E_0 = 3.5 \,\text{TeV}$ [1]

Take-home Messages

technical:

- PyHEADTAIL macro-particle simulations on the GPU: massive and reliable head-tail instability studies possible for realistic scenarios (arbitrary longitudinal distributions, non-linear synchrotron motion, non-linear space charge)
- now possible: generation of matched macro-particle distributions from tomography measurements (also first tomo for LHC :-)

physics:

- **1** long. distribution affects damper-related head-tail instability $(Q'_{x,y} \approx 0)$
- **l** long. distribution affects instability rise time for operational $Q'_{x,y} \approx 15$
- space charge suppresses TMCI at HL-LHC injection
- space charge possibly explains absence of (non-rigid) head-tail modes below certain energy

Further Resources

More detailed presentations:

- HL-LHC coherent stability studies with PyHEADTAIL,
 110th HSC section meeting, Jun'17 /
- can space charge stabilise head-tail instabilities at injection in the LHC? 89th LBOC meeting, Oct'17 //
- transverse stability for non-Gaussian bunches in HL-LHC,
 125th HSC section meeting, Oct'17 /

Further information:

- single-bunch stability with direct space charge, poster at impedance & instabilities workshop, Benevento (IT), Sep'17 /
- effect of space charge on the CERN LHC and SPS transverse instabilities: simulation vs. measurements, presentation by Elias Métral at space charge workshop, Darmstadt (DE), Oct'17 /

Thank you for your attention!

Acknowledgements:

Sergey Antipov, Nicolo Biancacci, Xavier Buffat, Steven Hancock, Elias Métral, Juan Müller

References I

[1] Elias Metral et al. Measurement and interpretation of transverse beam instabilities in the CERN large hadron collider (LHC) and extrapolations to HL-LHC. Tech. rep. CERN-ACC-2016-0098.

Geneva: CERN, July 2016. URL:

http://cds.cern.ch/record/2199121.

Generating Macro-particles in PyHEADTAIL

Ingredients to generate macro-particles:

- PyHEADTAIL RF bucket matching: https://github.com/PyCOMPLETE/PyHEADTAIL-playground/ blob/master/RFBucket_Matching.ipynb
- \longrightarrow create stationary macro-particle distribution $f(\mathcal{H})$ from tomogram: https://gitlab.cern.ch/oeftiger/tomo_to_sim/

Thermal vs. q-Gaussian Distribution

observe the emergence of radial mode 3 with the q-Gaussian distribution!

Without Space Charge: Head-tail Instabilities @Injection

