

Initial studies on SUSY top squark searches at FCC-hh [100 TeV]

Owen Colegrove, Loukas Gouskos, Joe Incandela

Introduction

- SUSY: one of the most extensively studied BSM theories
 - An excellent answer to: hierarchy problem, Dark Matter, unification of couplings

Current status

Introduction (2)

- FCC-hh @ 100 TeV:
 - Significant increase in the production cross section:

- More details on physics motivation:
 - ◆ FCC-Lecture from M. Mangano [slides]

Signal characteristics

Top squark decays: very distinct signature!

- Multiple jets
- 2 b-jets
- On-shell top quarks
- Large MET [from the two LSPs]

W->qq jet

- Key player of top squark searches: top tagging
 - Identification of hadronically decaying Lorentz boosted top quarks provides a powerful handle to suppress many of the SM backgrounds

Technical details

- Scope of this talk: Put in place all necessary pieces [i.e. code/structure]
 to carry out a search for top quarks @ 100 TeV
 - Develop dedicated analysis methods for this energy regime
 - Explore various object identification approaches tailored for 100 TeV
- Use "FCCSW" for lhe and ntuple production and "heppy" for analysis
 - FCC_v01 detector configuration
 - ◆ Produced a top squark signal model: m_{stop}=9000 GeV, m_{LSP}=1 GeV, xsec~10⁻⁵ pb
 - BKG samples: from Clemens
 - Top squark analysis directory under heppy
 - gen particle matching module for top-tagging developments
 - Might be useful in other analyses too.
- Use a cut-based analysis [ala. CMS-SUS-16-029] using a simple toptagging algorithm based on jet substructure [softdrop and n-jettiness]

Baseline analysis

All-hadronic final state:

- ◆ N_i(pT>100 GeV) >= 2 [j: anti-kt jet with R=0.4]
- N_{fi}(pT>200 GeV) >=1 [fj: anti-kt jet with R=0.8]
- Dphi(j_{1,2,3};MET)> 0.5 [QCD killers]

MET traditionally powerful; Nb useful to reduce EWK backgrounds

Baseline analysis (2)

- Simple top-quark identification based on softdrop (SD) & n-jettiness
 - ◆ 105<M_{SD}<220 GeV and tau3/tau2 < 0.67 (0.57) Loose (Tight)
- Distributions after: baseline + MET>250 GeV + Nb>=1

Top-tagging not as powerful as @13 TeV

Top squarks @ 100 TeV

Reminder: signal model with m_{stop}=9000 GeV, m_{LSP}=1 GeV

3-4 TeV stop in DR~0.1-0.15

Very different from what

we are used at LHC

Detectors with high granularity essential

Tagging of very-high-p_T tops

- High-p_T tops: AK8 not optimal
 - pT-dependent distance parameter ?

Tagging of very-high-p_T tops (2)

- Standard approach [with the FCC detector configuration] does not work.
- For very boosted tops we need improved methods
 - Investigate with different detector configurations

Next steps

Investigate alternative top-tagging approaches, eg.:

...and others

Next steps (2)

- Top-tagging will always be a key player in top squark searches
- However: need to improve on analysis techniques too:
- "Rare" backgrounds [e.g. ttV] become important at 100 TeV
 - With a very similar final state as signal: 2xtops + 2xbottoms + MET

Summary

- A first example of a top squark search using FCCSSW & heppy in place based on a simplified version of an LHC analysis
- Object reconstruction and analysis techniques developed for LHC@13-14
 TeV not sufficient for FCC-hh @100 TeV
 - But can serve as a reference
- Machinery in place to explore alternative methods in both object reconstruction and search design
- Stay tuned more updates in the next FCC-hh meeting!
- Many thanks to Michele Selvaggi, Clement Helsens and Valentin Volkl for their help!