

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Probing the structure of yrast states in even-even 214,216,218 Po through fast-timing measurements following the β -decay of 214,216,218 Bi

Spokespersons:

R. Lica, IFIN-HH (RO)

A.N. Andreyev, University of York (UK)

Contents

- Physics motivation
 - Previous studies of isomeric states/seniority scheme in even-even Po
 - Recent shell-model calculations
 - β-decay studies of ^{214,216,218}Bi at ISOLDE need for fast-timing
- Experimental description
 - Beam production
 - Fast-timing measurements at the ISOLDE Decay Station
 - Rate estimations
- Beamtime request

- Po isotopes
- ightarrow text-book example for studying the seniority scheme
- \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po

- Po isotopes
- → text-book example for studying the seniority scheme
- \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po
- Po isotopes with N>126
- → shell-model test using ²⁰⁸Pb as an inert core
- \rightarrow study the filling of the $vg_{9/2}$ orbital

Po isotopes

- → text-book example for studying the seniority scheme
- \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po
- Po isotopes with N>126
- → shell-model test using ²⁰⁸Pb as an inert core
- \rightarrow study the filling of the vg_{9/2} orbital

214,216,218**P**O

→ Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams

Po isotopes

- → text-book example for studying the seniority scheme
- \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po
- Po isotopes with N>126
- → shell-model test using ²⁰⁸Pb as an inert core
- \rightarrow study the filling of the vg_{9/2} orbital

 $\rightarrow \alpha$ +²⁰⁸Pb cluster configurations in ²¹²Po

• 214,216,218**P**O

- → Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams
- → Recent measurement by Astier et al. [1] of the 8_1^+ state half-life $T_{1/2}$ = 13(1) ns in 214 Po indicating a similar excitation mechanism as for 210 Pb, one-neutron-pair breaking

[1] A. Astier and M.-G. Porquet, Phys. Rev. C83, 014311 (2011).

130 132 134

We updated the B(E2) figure with known experimental data for Po isotopes (ENSDF + Kocheva et al. [1,2])

- \rightarrow A staggering can be noticed around ²¹⁰Po for the 8+ \rightarrow 6+ transition probability (present also for the 6+, 4+, 2+ cases?)
- \rightarrow The large value measured in ²¹²Po was proposed to be due to the α +²⁰⁸Pb cluster structures [A. Astier et al., Eur. Phys. J. A46, 165-185 (2010)]
- \rightarrow The first four excited states measured in ^{216,218}Po have similar excitation energies to those known in ²¹⁴Po , indicating a structural similarity (needs to be confirmed by B(E2) values in ^{216,218}Po)

^[1] D. Kocheva et al., Eur. Phys. J. A53, 175 (2017).

^[2] D. Kocheva et al., Phys. Rev. C96, 044305 (2017).

Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017]

```
\pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2}) - denoted by hfi-gij, with interaction PBPKH [1]. \pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) - denoted by r5i-r6j, with interaction PBKH7 [2].
```

- Non-truncated calculations were performed for ²⁰⁸⁻²¹²Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction.
- Excitations across the ²⁰⁸Pb shell closure were blocked.
- Transition rates were calculated with effective operators [3]

$$e_p=1.5 e$$
; $e_n=0.85 e$; $g_s=0.6 g_s^{free}$; $g_{\pi/}=1.115$; $g_{\nu/}=0$

^[1] E.K. Warburton, Phys. Rev. C 44, 233 (1991).

^[2] E.K. Warburton, B.A. Brown, Phys. Rev. C 43, 602 (1991)

^[3] R. Ferrer et al., Nat. Commun. 8, 14520 (2017)

^[4] D.Kocheva et al., Phys. Rev. 96, 044305 (2017)

Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017]

```
- denoted by hfi-gij, with interaction PBPKH [1].
\pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2})
\pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) - denoted by r5i-r6j, with interaction PBKH7 [2].
```

- Non-truncated calculations were performed for ²⁰⁸⁻²¹²Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction.
- Excitations across the ²⁰⁸Pb shell closure were blocked.
- Transition rates were calculated with effective operators [3]

```
e_n=1.5 e; e_n=0.85 e; g_s=0.6 g_s^{free}; g_{\pi l}=1.115; g_{\nu l}=0
```

Observations:

- For N>126 the importance of truncation and the low-spin N=6 orbits is clearly visible in contrast to earlier statements that a single- or two-orbit model space for protons and neutrons is appropriate [4].
- The importance of precise new lifetime measurements for ²¹²⁻²¹⁸Po 6+ and 8⁺ states is clearly exhibited in the figure.

Systematic of $B(E2; I \rightarrow I-2)$ in Poisotopes in comparison to shell model results.

^[1] E.K. Warburton, Phys. Rev. C 44, 233 (1991).

^[2] E.K. Warburton, B.A. Brown, Phys. Rev. C 43, 602 (1991)

^[3] R. Ferrer et al., Nat. Commun. 8, 14520 (2017)

^[4] D.Kocheva et al., Phys. Rev. 96, 044305 (2017)

Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017]

```
- denoted by hfi-gij, with interaction PBPKH [1].
\pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2})
\pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) - denoted by r5i-r6j, with interaction PBKH7 [2].
```

- Non-truncated calculations were performed for ²⁰⁸⁻²¹²Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction.
- Excitations across the ²⁰⁸Pb shell closure were blocked.
- Transition rates were calculated with effective operators [3]

```
e_n=1.5 e; e_n=0.85 e; g_s=0.6 g_s^{free}; g_{\pi/}=1.115; g_{\nu/}=0
```

Observations:

- For N>126 the importance of truncation and the low-spin N=6 orbits is clearly visible in contrast to earlier statements that a single- or two-orbit model space for protons and neutrons is appropriate [4].
- The importance of precise new lifetime measurements for ²¹²⁻²¹⁸Po 6+ and 8⁺ states is clearly exhibited in the figure.

Conclusion:

B(E2) values in the Po chain will be decisive to verify shell model interactions and disentangle the correlation of model space and interaction. A staggering except when crossing the N=126 shell closure is not really supported by shell model calculations.

Systematic of $B(E2; I \rightarrow I-2)$ in Poisotopes in comparison to shell model results.

- [1] E.K. Warburton, Phys. Rev. C 44, 233 (1991).
- [2] E.K. Warburton, B.A. Brown, Phys. Rev. C 43, 602 (1991)
- [3] R. Ferrer et al., Nat. Commun. 8, 14520 (2017)
- [4] D.Kocheva et al., Phys. Rev. 96, 044305 (2017)

Z

4.5

10862.7

10862.8

²¹⁴Bi

- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)
- direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life)

10862.9

wn, cm⁻¹

10863.0

10863.1

IDS 2017

²¹⁴Bi

- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)
- direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life)

Time distributions between the emissions of γ rays of 214 Po showing either prompt coincidences [curves in red and green, panel (a)] or delayed ones corresponding to the decay of the 1583-keV state [curves in blue, panels (b), (c), and (d)].

 $T_{1/2}$ = 13(1) ns using HPGe detectors [1]

→ can be re-checked using fast-timing detectors

 \rightarrow B(E2; 8⁺ \rightarrow 6⁺) = 0.54(4) W.u. used to estimate the T_{1/2} of 8⁺ states in ^{216,218}Po

Lifetimes of 6^+ , 4^+ , 2^+ states can be accessed through fast-timing measurement.

- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)

- direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life)

- the decay populates clearly the yrast band up to the 8+ state [1] but no lifetimes are known

γ-ray energy spectrum recorded with the LEGe detector coincident with the 359.5 keV line of ²¹⁶Bi [1]

[1] J. Kurpeta et al., Eur. Phys. J. A7, 49-54 (2000).

- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)

- direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life)

- the decay populates clearly the yrast band up to the 8+ state [1] but no lifetimes are known

- beam intensity of 44(8) ions/μC [2] using UCx target + RILIS

²¹⁸Bi

- similar decay level scheme as ²¹⁶Bi but no known lifetimes

β-gated γ-ray energy spectrum from ²¹⁸Bi β-decay with (top) and without (bottom) laser ionization [2]

[1] J. Kurpeta et al., Eur. Phys. J. A7, 49-54 (2000). [2] H. De Witte et al., Phys. Rev. C**69**, 044305 (2004).

Beam production

- Use the same proven method: **UCx** target + **RILIS** [1,2]
- Yields recently extracted during IS608 at MR-ToF in 2016

Isotope	Rate estimate (ions/s)
²¹⁴ Bi	2 x 10 ⁴
²¹⁶ Bi	2 x 10 ³
²¹⁸ Bi	2 x 10 ²

(2 μA proton current)

Beam production

- Use the same proven method: **UCx** target + **RILIS** [1,2]
- Yields recently extracted during IS608 at MR-ToF in 2016.
- Short-lived contaminants such as Fr can be easily removed using the pulsed release technique and HRS (instead of GPS used in 2017 at IDS)

Isotope	Rate estimate (ions/s)
²¹⁴ Bi	2 x 10 ⁴
²¹⁶ Bi	2 x 10 ³
²¹⁸ Bi	2 x 10 ²

(2 μA proton current)

	Chart of nuclides	for the isoto	pes north-east	of ²⁰⁸ Pb	[1]
--	-------------------	---------------	----------------	----------------------	-----

²¹³ Ac	²¹⁴ Ac	²¹⁵ Ac 170 ms	²¹⁶ Ac 330 μs	217AC 69 ns	²¹⁸ Ac 1.1 μs	²¹⁹ Ac	²²⁰ Ac	²²¹ Ac	²²² Ac	²²³ Ac	²²⁴ Ac	²²⁵ Ac	²²⁶ Ac	²²⁷ Ac	
²¹² Ra	²¹³ Ra	²¹⁴ Ra	²¹⁵ Ra 1.6 ms	²¹⁶ Ra 180 ns	²¹⁷ Ra 1.6 μs	²¹⁸ Ra 26 μs	²¹⁹ Ra	²²⁰ Ra	²²¹ Ra	²²² Ra	²²³ Ra	²²⁴ Ra	²²⁵ Ra	²²⁶ Ra	
²¹¹ Fr	²¹² Fr	²¹³ Fr		²¹⁵ Fr 86 ns		22 μs	²¹⁸ Fr 1 ms •	. ''	²²⁰ Fr		²²² Fr	²²³ Fr	²²⁴ Fr	²²⁵ Fr	
²¹⁰ Rn	²¹¹ Rn	²¹² Rn	²¹³ Rn	²¹⁴ Rn	²¹⁵ Rn 2.3 μs	²¹⁶ Rn 45 μs	²¹⁷ Rn _{0.54} ms	²¹⁸ Rn 35 ms	²¹⁹ Rn	²²⁰ Rn	²²¹ Rn	²²² Rn	²²³ Rn	²²⁴ Rn	
²⁰⁹ At	²¹⁰ At	²¹¹ At	²¹² At	²¹³ At		²¹⁵ At 0.1 ms	²¹⁶ At 300 μs	²¹⁷ At 32 ms	218At 1.6 s	²¹⁹ At	²²⁰ At	²²¹ At	²²² At	²²³ At	
²⁰⁸ Po	²⁰⁹ Po	²¹⁰ Po	²¹¹ Po	²¹² Po	²¹³ Po	²¹⁴ Po	²¹⁵ Po 1.7 ms		²¹⁷ Po 1.5 s	²¹⁸ Po 3.1 m	²¹⁹ Po	²²⁰ Po			
²⁰⁷ Bi	²⁰⁸ Bi	²⁰⁹ Bi	²¹⁰ Bi	²¹¹ Bi	²¹² Bi	²¹³ Bi	²¹⁴ Bi 19.9 m	²¹⁵ Bi 7.7 m	²¹⁶ Bi 2.2 m	²¹⁷ Bi 1.6 m	²¹⁸ Bi 33 s		•		
²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb	²¹⁰ Pb	²¹¹ Pb	²¹² Pb	²¹³ Pb	²¹⁴ Pb	²¹⁵ Pb			Z	=82		
205 T	206 TI	²⁰⁷ TI	²⁰⁸ TI	209 TI	210 TI	211 TI	212 T								

The pulsed release technique [1]: the different time scales for the α decay of the contaminants and the β^- decay under investigation allow for a selective suppression.

[1] H. De Witte, PhD Thesis, KU Leuven (2004) [2] U. Koster et al., Nucl. Instr. and Meth. B204, 347-352 (2003).

Fast-timing measurements at the ISOLDE Decay station

Ranges:

Centroid shift method: - 10 ps - 100 ps

Slope method - **50 ps - 50 ns** (or longer)

[H. Mach et al. NIMA 280, 49 (1989)]

- Well established technique at IDS since 2014 [1,2,3]
- Detection system comprising of:
 - 4 Clover HPGe 7% abs. eff. at 500keV
 - 2 LaBr₃(Ce) 3% abs. eff. at 500keV
 - 1 Plastic Scintillator 20% abs. eff.
 - [1] R. Lica et al., Phys. Rev. C 93, 044303 (2016).
 - [2] R. Lica et al., J. Phys. G 44, 054002 (2017).
 - [3] L.M. Fraile, J. Phys. G 44, 094004 (2017).

Example: lifetime measurement of 8⁺ state in ²¹⁸Po

Level	Start	Stop	Cleaning gate
	(eff)	(eff)	(eff)
8+	β (20%)	263.0 (2 x 4%)	385.7 or 425.5 or 509.7 (23%)

Observation: a conservative rate of 100 ions/s instead of 200 ions/s considering transmission to IDS (70-80%) and beam downtime.

Example: lifetime measurement of 6⁺ state in ²¹⁸Po

Level	Start	Stop	Cleaning gate
	(eff)	(eff)	(eff)
8+	β (20%)	263.0 (2 x 4%)	385.7 or 425.5 or 509.7 (23%)
6 ⁺ (2 ⁺ ,4 ⁺)	263.0	385.7	425.5 or 509.7 or β
	(4%)	(3%)	(14%+20%)

Rate = 59% * (4% * 3% * 2) * (14%+20%) * 100 ions/s = 0.05 counts/s = 1.4 * 10³ counts/shift

Rate estimates

Nucleus/Yield	J^{π}	$E_{\gamma} (keV)$	$T_{1/2}$	Events/shift
214 Po	2_1^+	609.0	>9 ps	4.9×10^4
10^4 ions/s	4_1^+	405.4	>68 ps	9.5×10^4
	6_1^+	324.4	>210 ps	1.7×10^5
	8_1^+	244.1	13(1) ns [6]	7.7×10^5
²¹⁶ Po	2_1^+	549.7	>15 ps	5.9×10^3
10^3 ions/s	4_1^+	418.8	>58 ps	9.7×10^3
,	6_1^{+}	359.5	>120 ps	1.7×10^4
	81	223.4	$\sim 27 \text{ ns}$	7.6×10^4
²¹⁸ Po	2_1^+	509.7	>21 ps	6.5×10^2
10^2 ions/s	4_1^+	425.5	>52 ps	1.1×10^3
,	6_1^{+}	385.7	>86 ps	1.4×10^3
	81	263.0	\sim 12 ns	6.1×10^3

Rate estimates

• Half-lives for yrast states in ^{214,216,218}Po estimated using:

B(E2)
$$\sim$$
 0.5 W.u. [1] for 8+ states

Nucleus/Yield	J^{π}	$E_{\gamma} \text{ (keV)}$	$T_{1/2}$	Events/shift
214 Po	2_1^+	609.0	>9 ps	4.9×10^4
10^4 ions/s	4_1^+	405.4	>68 ps	9.5×10^4
	6_1^+	324.4	>210 ps	1.7×10^5
	8 ₁ +	244.1	13(1) ns [6]	7.7×10^5
²¹⁶ Po	2_1^+	549.7	>15 ps	5.9×10^3
10^3 ions/s	4_{1}^{+}	418.8	>58 ps	9.7×10^3
·	6_1^+	359.5	>120 ps	1.7×10^4
	81	223.4	\sim 27 ns	7.6×10^4
²¹⁸ Po	2_1^+	509.7	>21 ps	6.5×10^2
10^2 ions/s	4_1^+	425.5	>52 ps	1.1×10^3
·	6_1^{+}	385.7	>86 ps	1.4×10^3
	81	263.0	\sim 12 ns	6.1×10^3

Within the reach of the fast-timing setup available at IDS (> 10 ps)

Beamtime request: 7 shifts

- 2 shifts for 218 Bi (in order to reach a statistics > 1000 counts for the time distribution of the 2_1 + state)
- 1 shift for ²¹⁶Bi
- 1 shift for ²¹⁴Bi (the incoming rate will be reduced in order to avoid pile-up effects)
- 1 shift for online fast-timing calibrations using implantation sources (eg. ¹³⁸Cs, ⁸⁸Rb, ¹⁴⁰Ba)
- 2 shifts for laser tuning

Nucleus/Yield	J^{π}	$E_{\gamma} \text{ (keV)}$	$T_{1/2}$	Events/shift
214 Po	2_1^+	609.0	>9 ps	4.9×10^4
10^4 ions/s	4_1^+	405.4	>68 ps	9.5×10^4
1 shift	6_1^+	324.4	>210 ps	1.7×10^5
2 3/11/0	8_1^+	244.1	13(1) ns [6]	7.7×10^5
²¹⁶ Po	2_1^+	549.7	>15 ps	5.9×10^3
10^3 ions/s	4_1^{+}	418.8	>58 ps	9.7×10^3
1 abife	6_1^+	359.5	>120 ps	1.7×10^4
1 shift	8_1^+	223.4	$\sim 27 \text{ ns}$	7.6×10^4
²¹⁸ Po	2_1^+	509.7	>21 ps	6.5×10^2
10^2 ions/s	4_1^{+}	425.5	>52 ps	1.1×10^3
2 shifts	6_1^{+}	385.7	>86 ps	1.4×10^3
2 5111115	81	263.0	\sim 12 ns	6.1×10^3

Observation:

If approved, this experiment can be scheduled together with the remaining 3 shifts of the IS608 experiment (HFS measurements of ^{216,218}Bi) because of the following considerations:

- both measurements can be performed using the same fast-timing configuration of IDS
- the stable beam and RILIS tuning will be done only once

Collaboration

R. Lică¹, A.N. Andreyev², L.M. Fraile³, N. Mărginean¹, P. Van Duppen⁴, G. Rainovski⁵, C. Raison², J. Cubiss², M. Monthery², R. Harding², B. Andel⁶, S. Antalic⁶, J. Benito³, J.L. Herraiz³, V. Snchez-Tembleque³, J.M. Udas³, V. Vedia³, C. Mihai¹, A. Negret¹, F. Rotaru¹, S. Pascu¹, R. Mărginean¹, R. Mihai¹, C. Costache¹, A. Turturica¹, C. Sotty¹, M. Stryjczyk⁴, K. Rezynkina⁴, H. De Witte⁴, D. Kocheva⁵, R. Zdarova⁵, K. Glednishki⁵, A. E. Barzakh⁷, V. Fedosseev⁸, B.A. Marsh⁸, G. Georgiev⁹, I. Tsekanovich¹⁰, G. Benzoni¹¹, A. Illana¹², J.J Valiente-Dobon¹², A. Gottardo¹² Z. Podolyak¹³, M. Brunet¹³, J.M. Régis¹⁴, V. Karayonchev¹⁴, J. Jolie¹⁴, L. Knafla¹⁴, A. Esmaylzadeh¹⁴, N. Warr¹⁴, A. Algora¹⁵, A.I. Morales¹⁵, C. Henrich¹⁶, I. Homm¹⁶, G.F. Martinez¹⁶, H.-B. Rhee¹⁶, P.T. Greenlees^{17,18}, P. Rahkila^{17,18}, T. Grahn^{17,18} and J. Pakarinen^{17,18}

 $^{^1}$ "Horia Hulubei" National Institute for R&D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania

² University of York, Department of Physics, York YO10 5DD, N Yorkshire, United Kingdom

³ Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense, CEI Moncloa, 28040 Madrid, Spain

⁴KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium

⁵Faculty of Physics, St. Kliment Ohridski University of Sofia, BG-1164 Sofia, Bulgaria

 $^{^6} Comenius\ University,\ Department\ of\ Nuclear\ Physics\ \&\ Biophysics,\ Bratislava\ 84248,\ Slovakia$

⁷Petersburg Nuclear Physics Institute, Gatchina, Russia

⁸CERN, Geneva, Switzerland

⁹ CSNSM-IN2P3-CNRS, Universit Paris-Sud, Orsay, France

¹⁰CENBG, Gradigan, Bordeaux, France

¹¹Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy

¹²Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy

¹³University of Surrey, Dept. Phys, Guildford GU2 7XH, Surrey, England

¹⁴IKP, University of Cologne, Zlpicher Str. 77, D-50937 Cologne, Germany

¹⁵Instituto de Fsica Corpuscular, CSIC and University of Valencia, E-46071 Valencia, Spain

 $^{{}^{16}}Institut\;fur\;Kernphysik,\;Technische\;Universitat\;Darmstadt,\;64289\;Darmstadt,\;Germany$

¹⁷University of Jyvaskyla, Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaskyla, Finland

¹⁸Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland

Fig. 3. The decay scheme of ²¹⁶Bi

