Proposal to the ISOLDE and Neutron Time-of-Flight Committee # Probing the structure of yrast states in even-even 214,216,218 Po through fast-timing measurements following the β -decay of 214,216,218 Bi Spokespersons: R. Lica, IFIN-HH (RO) **A.N.** Andreyev, University of York (UK) ## Contents - Physics motivation - Previous studies of isomeric states/seniority scheme in even-even Po - Recent shell-model calculations - β-decay studies of ^{214,216,218}Bi at ISOLDE need for fast-timing - Experimental description - Beam production - Fast-timing measurements at the ISOLDE Decay Station - Rate estimations - Beamtime request - Po isotopes - ightarrow text-book example for studying the seniority scheme - \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po - Po isotopes - → text-book example for studying the seniority scheme - \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po - Po isotopes with N>126 - → shell-model test using ²⁰⁸Pb as an inert core - \rightarrow study the filling of the $vg_{9/2}$ orbital #### Po isotopes - → text-book example for studying the seniority scheme - \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po - Po isotopes with N>126 - → shell-model test using ²⁰⁸Pb as an inert core - \rightarrow study the filling of the vg_{9/2} orbital #### 214,216,218**P**O → Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams #### Po isotopes - → text-book example for studying the seniority scheme - \rightarrow presence of $\pi(h_{9/2})$ 8⁺ isomers in the even-even Po - Po isotopes with N>126 - → shell-model test using ²⁰⁸Pb as an inert core - \rightarrow study the filling of the vg_{9/2} orbital $\rightarrow \alpha$ +²⁰⁸Pb cluster configurations in ²¹²Po #### • 214,216,218**P**O - → Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams - → Recent measurement by Astier et al. [1] of the 8_1^+ state half-life $T_{1/2}$ = 13(1) ns in 214 Po indicating a similar excitation mechanism as for 210 Pb, one-neutron-pair breaking [1] A. Astier and M.-G. Porquet, Phys. Rev. C83, 014311 (2011). 130 132 134 We updated the B(E2) figure with known experimental data for Po isotopes (ENSDF + Kocheva et al. [1,2]) - \rightarrow A staggering can be noticed around ²¹⁰Po for the 8+ \rightarrow 6+ transition probability (present also for the 6+, 4+, 2+ cases?) - \rightarrow The large value measured in ²¹²Po was proposed to be due to the α +²⁰⁸Pb cluster structures [A. Astier et al., Eur. Phys. J. A46, 165-185 (2010)] - \rightarrow The first four excited states measured in ^{216,218}Po have similar excitation energies to those known in ²¹⁴Po , indicating a structural similarity (needs to be confirmed by B(E2) values in ^{216,218}Po) ^[1] D. Kocheva et al., Eur. Phys. J. A53, 175 (2017). ^[2] D. Kocheva et al., Phys. Rev. C96, 044305 (2017). Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017] ``` \pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2}) - denoted by hfi-gij, with interaction PBPKH [1]. \pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) - denoted by r5i-r6j, with interaction PBKH7 [2]. ``` - Non-truncated calculations were performed for ²⁰⁸⁻²¹²Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction. - Excitations across the ²⁰⁸Pb shell closure were blocked. - Transition rates were calculated with effective operators [3] $$e_p=1.5 e$$; $e_n=0.85 e$; $g_s=0.6 g_s^{free}$; $g_{\pi/}=1.115$; $g_{\nu/}=0$ ^[1] E.K. Warburton, Phys. Rev. C 44, 233 (1991). ^[2] E.K. Warburton, B.A. Brown, Phys. Rev. C 43, 602 (1991) ^[3] R. Ferrer et al., Nat. Commun. 8, 14520 (2017) ^[4] D.Kocheva et al., Phys. Rev. 96, 044305 (2017) Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017] ``` - denoted by hfi-gij, with interaction PBPKH [1]. \pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2}) \pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) - denoted by r5i-r6j, with interaction PBKH7 [2]. ``` - Non-truncated calculations were performed for ²⁰⁸⁻²¹²Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction. - Excitations across the ²⁰⁸Pb shell closure were blocked. - Transition rates were calculated with effective operators [3] ``` e_n=1.5 e; e_n=0.85 e; g_s=0.6 g_s^{free}; g_{\pi l}=1.115; g_{\nu l}=0 ``` #### Observations: - For N>126 the importance of truncation and the low-spin N=6 orbits is clearly visible in contrast to earlier statements that a single- or two-orbit model space for protons and neutrons is appropriate [4]. - The importance of precise new lifetime measurements for ²¹²⁻²¹⁸Po 6+ and 8⁺ states is clearly exhibited in the figure. Systematic of $B(E2; I \rightarrow I-2)$ in Poisotopes in comparison to shell model results. ^[1] E.K. Warburton, Phys. Rev. C 44, 233 (1991). ^[2] E.K. Warburton, B.A. Brown, Phys. Rev. C 43, 602 (1991) ^[3] R. Ferrer et al., Nat. Commun. 8, 14520 (2017) ^[4] D.Kocheva et al., Phys. Rev. 96, 044305 (2017) Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017] ``` - denoted by hfi-gij, with interaction PBPKH [1]. \pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2}) \pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) - denoted by r5i-r6j, with interaction PBKH7 [2]. ``` - Non-truncated calculations were performed for ²⁰⁸⁻²¹²Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction. - Excitations across the ²⁰⁸Pb shell closure were blocked. - Transition rates were calculated with effective operators [3] ``` e_n=1.5 e; e_n=0.85 e; g_s=0.6 g_s^{free}; g_{\pi/}=1.115; g_{\nu/}=0 ``` #### Observations: - For N>126 the importance of truncation and the low-spin N=6 orbits is clearly visible in contrast to earlier statements that a single- or two-orbit model space for protons and neutrons is appropriate [4]. - The importance of precise new lifetime measurements for ²¹²⁻²¹⁸Po 6+ and 8⁺ states is clearly exhibited in the figure. #### **Conclusion:** B(E2) values in the Po chain will be decisive to verify shell model interactions and disentangle the correlation of model space and interaction. A staggering except when crossing the N=126 shell closure is not really supported by shell model calculations. Systematic of $B(E2; I \rightarrow I-2)$ in Poisotopes in comparison to shell model results. - [1] E.K. Warburton, Phys. Rev. C 44, 233 (1991). - [2] E.K. Warburton, B.A. Brown, Phys. Rev. C 43, 602 (1991) - [3] R. Ferrer et al., Nat. Commun. 8, 14520 (2017) - [4] D.Kocheva et al., Phys. Rev. 96, 044305 (2017) Z 4.5 10862.7 10862.8 ²¹⁴Bi - HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017) - direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life) 10862.9 wn, cm⁻¹ 10863.0 10863.1 #### **IDS 2017** ²¹⁴Bi - HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017) - direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life) Time distributions between the emissions of γ rays of 214 Po showing either prompt coincidences [curves in red and green, panel (a)] or delayed ones corresponding to the decay of the 1583-keV state [curves in blue, panels (b), (c), and (d)]. $T_{1/2}$ = 13(1) ns using HPGe detectors [1] → can be re-checked using fast-timing detectors \rightarrow B(E2; 8⁺ \rightarrow 6⁺) = 0.54(4) W.u. used to estimate the T_{1/2} of 8⁺ states in ^{216,218}Po Lifetimes of 6^+ , 4^+ , 2^+ states can be accessed through fast-timing measurement. - HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017) - direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life) - the decay populates clearly the yrast band up to the 8+ state [1] but no lifetimes are known ## γ-ray energy spectrum recorded with the LEGe detector coincident with the 359.5 keV line of ²¹⁶Bi [1] [1] J. Kurpeta et al., Eur. Phys. J. A7, 49-54 (2000). - HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017) - direct identification and spectroscopy of an 8⁺ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life) - the decay populates clearly the yrast band up to the 8+ state [1] but no lifetimes are known - beam intensity of 44(8) ions/μC [2] using UCx target + RILIS ²¹⁸Bi - similar decay level scheme as ²¹⁶Bi but no known lifetimes #### β-gated γ-ray energy spectrum from ²¹⁸Bi β-decay with (top) and without (bottom) laser ionization [2] [1] J. Kurpeta et al., Eur. Phys. J. A7, 49-54 (2000). [2] H. De Witte et al., Phys. Rev. C**69**, 044305 (2004). # Beam production - Use the same proven method: **UCx** target + **RILIS** [1,2] - Yields recently extracted during IS608 at MR-ToF in 2016 | Isotope | Rate estimate
(ions/s) | |-------------------|---------------------------| | ²¹⁴ Bi | 2 x 10 ⁴ | | ²¹⁶ Bi | 2 x 10 ³ | | ²¹⁸ Bi | 2 x 10 ² | (2 μA proton current) # Beam production - Use the same proven method: **UCx** target + **RILIS** [1,2] - Yields recently extracted during IS608 at MR-ToF in 2016. - Short-lived contaminants such as Fr can be easily removed using the pulsed release technique and HRS (instead of GPS used in 2017 at IDS) | Isotope | Rate estimate (ions/s) | |-------------------|------------------------| | ²¹⁴ Bi | 2 x 10 ⁴ | | ²¹⁶ Bi | 2 x 10 ³ | | ²¹⁸ Bi | 2 x 10 ² | (2 μA proton current) | | Chart of nuclides | for the isoto | pes north-east | of ²⁰⁸ Pb | [1] | |--|-------------------|---------------|----------------|----------------------|-----| |--|-------------------|---------------|----------------|----------------------|-----| | ²¹³ Ac | ²¹⁴ Ac | ²¹⁵ Ac
170 ms | ²¹⁶ Ac
330 μs | 217AC
69 ns | ²¹⁸ Ac
1.1 μs | ²¹⁹ Ac | ²²⁰ Ac | ²²¹ Ac | ²²² Ac | ²²³ Ac | ²²⁴ Ac | ²²⁵ Ac | ²²⁶ Ac | ²²⁷ Ac | | |-------------------|-------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---|----------------------------|----------------------------|----------------------------|---------------------------|-------------------|-------------------|-------------------|--| | ²¹² Ra | ²¹³ Ra | ²¹⁴ Ra | ²¹⁵ Ra
1.6 ms | ²¹⁶ Ra
180 ns | ²¹⁷ Ra
1.6 μs | ²¹⁸ Ra
26 μs | ²¹⁹ Ra | ²²⁰ Ra | ²²¹ Ra | ²²² Ra | ²²³ Ra | ²²⁴ Ra | ²²⁵ Ra | ²²⁶ Ra | | | ²¹¹ Fr | ²¹² Fr | ²¹³ Fr | | ²¹⁵ Fr
86 ns | | 22 μs | ²¹⁸ Fr
1 ms • | . '' | ²²⁰ Fr | | ²²² Fr | ²²³ Fr | ²²⁴ Fr | ²²⁵ Fr | | | ²¹⁰ Rn | ²¹¹ Rn | ²¹² Rn | ²¹³ Rn | ²¹⁴ Rn | ²¹⁵ Rn
2.3 μs | ²¹⁶ Rn
45 μs | ²¹⁷ Rn
_{0.54} ms | ²¹⁸ Rn
35 ms | ²¹⁹ Rn | ²²⁰ Rn | ²²¹ Rn | ²²² Rn | ²²³ Rn | ²²⁴ Rn | | | ²⁰⁹ At | ²¹⁰ At | ²¹¹ At | ²¹² At | ²¹³ At | | ²¹⁵ At
0.1 ms | ²¹⁶ At
300 μs | ²¹⁷ At
32 ms | 218At
1.6 s | ²¹⁹ At | ²²⁰ At | ²²¹ At | ²²² At | ²²³ At | | | ²⁰⁸ Po | ²⁰⁹ Po | ²¹⁰ Po | ²¹¹ Po | ²¹² Po | ²¹³ Po | ²¹⁴ Po | ²¹⁵ Po
1.7 ms | | ²¹⁷ Po
1.5 s | ²¹⁸ Po
3.1 m | ²¹⁹ Po | ²²⁰ Po | | | | | ²⁰⁷ Bi | ²⁰⁸ Bi | ²⁰⁹ Bi | ²¹⁰ Bi | ²¹¹ Bi | ²¹² Bi | ²¹³ Bi | ²¹⁴ Bi
19.9 m | ²¹⁵ Bi
7.7 m | ²¹⁶ Bi
2.2 m | ²¹⁷ Bi
1.6 m | ²¹⁸ Bi
33 s | | • | | | | ²⁰⁶ Pb | ²⁰⁷ Pb | ²⁰⁸ Pb | ²⁰⁹ Pb | ²¹⁰ Pb | ²¹¹ Pb | ²¹² Pb | ²¹³ Pb | ²¹⁴ Pb | ²¹⁵ Pb | | | Z | =82 | | | | 205 T | 206 TI | ²⁰⁷ TI | ²⁰⁸ TI | 209 TI | 210 TI | 211 TI | 212 T | | | | | | | | | The pulsed release technique [1]: the different time scales for the α decay of the contaminants and the β^- decay under investigation allow for a selective suppression. [1] H. De Witte, PhD Thesis, KU Leuven (2004) [2] U. Koster et al., Nucl. Instr. and Meth. B204, 347-352 (2003). ## Fast-timing measurements at the ISOLDE Decay station #### Ranges: Centroid shift method: - 10 ps - 100 ps Slope method - **50 ps - 50 ns** (or longer) [H. Mach et al. NIMA 280, 49 (1989)] - Well established technique at IDS since 2014 [1,2,3] - Detection system comprising of: - 4 Clover HPGe 7% abs. eff. at 500keV - 2 LaBr₃(Ce) 3% abs. eff. at 500keV - 1 Plastic Scintillator 20% abs. eff. - [1] R. Lica et al., Phys. Rev. C 93, 044303 (2016). - [2] R. Lica et al., J. Phys. G 44, 054002 (2017). - [3] L.M. Fraile, J. Phys. G 44, 094004 (2017). ## Example: lifetime measurement of 8⁺ state in ²¹⁸Po | Level | Start | Stop | Cleaning gate | |-------|------------|-------------------|-------------------------------| | | (eff) | (eff) | (eff) | | 8+ | β
(20%) | 263.0
(2 x 4%) | 385.7 or 425.5 or 509.7 (23%) | **Observation**: a conservative rate of 100 ions/s instead of 200 ions/s considering transmission to IDS (70-80%) and beam downtime. # Example: lifetime measurement of 6⁺ state in ²¹⁸Po | Level | Start | Stop | Cleaning gate | |--|------------|-------------------|-------------------------------| | | (eff) | (eff) | (eff) | | 8+ | β
(20%) | 263.0
(2 x 4%) | 385.7 or 425.5 or 509.7 (23%) | | 6 ⁺ (2 ⁺ ,4 ⁺) | 263.0 | 385.7 | 425.5 or 509.7 or β | | | (4%) | (3%) | (14%+20%) | Rate = 59% * (4% * 3% * 2) * (14%+20%) * 100 ions/s = 0.05 counts/s = 1.4 * 10³ counts/shift ## Rate estimates | Nucleus/Yield | J^{π} | $E_{\gamma} (keV)$ | $T_{1/2}$ | Events/shift | |-----------------------|-----------|--------------------|----------------------|-------------------| | 214 Po | 2_1^+ | 609.0 | >9 ps | 4.9×10^4 | | 10^4 ions/s | 4_1^+ | 405.4 | >68 ps | 9.5×10^4 | | | 6_1^+ | 324.4 | >210 ps | 1.7×10^5 | | | 8_1^+ | 244.1 | 13(1) ns [6] | 7.7×10^5 | | ²¹⁶ Po | 2_1^+ | 549.7 | >15 ps | 5.9×10^3 | | 10^3 ions/s | 4_1^+ | 418.8 | >58 ps | 9.7×10^3 | | , | 6_1^{+} | 359.5 | >120 ps | 1.7×10^4 | | | 81 | 223.4 | $\sim 27 \text{ ns}$ | 7.6×10^4 | | ²¹⁸ Po | 2_1^+ | 509.7 | >21 ps | 6.5×10^2 | | 10^2 ions/s | 4_1^+ | 425.5 | >52 ps | 1.1×10^3 | | , | 6_1^{+} | 385.7 | >86 ps | 1.4×10^3 | | | 81 | 263.0 | \sim 12 ns | 6.1×10^3 | ### Rate estimates • Half-lives for yrast states in ^{214,216,218}Po estimated using: B(E2) $$\sim$$ 0.5 W.u. [1] for 8+ states | Nucleus/Yield | J^{π} | $E_{\gamma} \text{ (keV)}$ | $T_{1/2}$ | Events/shift | |-----------------------|------------------|----------------------------|----------------|-------------------| | 214 Po | 2_1^+ | 609.0 | >9 ps | 4.9×10^4 | | 10^4 ions/s | 4_1^+ | 405.4 | >68 ps | 9.5×10^4 | | | 6_1^+ | 324.4 | >210 ps | 1.7×10^5 | | | 8 ₁ + | 244.1 | 13(1) ns [6] | 7.7×10^5 | | ²¹⁶ Po | 2_1^+ | 549.7 | >15 ps | 5.9×10^3 | | 10^3 ions/s | 4_{1}^{+} | 418.8 | >58 ps | 9.7×10^3 | | · | 6_1^+ | 359.5 | >120 ps | 1.7×10^4 | | | 81 | 223.4 | \sim 27 ns | 7.6×10^4 | | ²¹⁸ Po | 2_1^+ | 509.7 | >21 ps | 6.5×10^2 | | 10^2 ions/s | 4_1^+ | 425.5 | >52 ps | 1.1×10^3 | | · | 6_1^{+} | 385.7 | >86 ps | 1.4×10^3 | | | 81 | 263.0 | \sim 12 ns | 6.1×10^3 | Within the reach of the fast-timing setup available at IDS (> 10 ps) #### Beamtime request: 7 shifts - 2 shifts for 218 Bi (in order to reach a statistics > 1000 counts for the time distribution of the 2_1 + state) - 1 shift for ²¹⁶Bi - 1 shift for ²¹⁴Bi (the incoming rate will be reduced in order to avoid pile-up effects) - 1 shift for online fast-timing calibrations using implantation sources (eg. ¹³⁸Cs, ⁸⁸Rb, ¹⁴⁰Ba) - 2 shifts for laser tuning | Nucleus/Yield | J^{π} | $E_{\gamma} \text{ (keV)}$ | $T_{1/2}$ | Events/shift | |-----------------------|-----------|----------------------------|----------------------|-------------------| | 214 Po | 2_1^+ | 609.0 | >9 ps | 4.9×10^4 | | 10^4 ions/s | 4_1^+ | 405.4 | >68 ps | 9.5×10^4 | | 1 shift | 6_1^+ | 324.4 | >210 ps | 1.7×10^5 | | 2 3/11/0 | 8_1^+ | 244.1 | 13(1) ns [6] | 7.7×10^5 | | ²¹⁶ Po | 2_1^+ | 549.7 | >15 ps | 5.9×10^3 | | 10^3 ions/s | 4_1^{+} | 418.8 | >58 ps | 9.7×10^3 | | 1 abife | 6_1^+ | 359.5 | >120 ps | 1.7×10^4 | | 1 shift | 8_1^+ | 223.4 | $\sim 27 \text{ ns}$ | 7.6×10^4 | | ²¹⁸ Po | 2_1^+ | 509.7 | >21 ps | 6.5×10^2 | | 10^2 ions/s | 4_1^{+} | 425.5 | >52 ps | 1.1×10^3 | | 2 shifts | 6_1^{+} | 385.7 | >86 ps | 1.4×10^3 | | 2 5111115 | 81 | 263.0 | \sim 12 ns | 6.1×10^3 | #### **Observation:** If approved, this experiment can be scheduled together with the remaining 3 shifts of the IS608 experiment (HFS measurements of ^{216,218}Bi) because of the following considerations: - both measurements can be performed using the same fast-timing configuration of IDS - the stable beam and RILIS tuning will be done only once ## Collaboration R. Lică¹, A.N. Andreyev², L.M. Fraile³, N. Mărginean¹, P. Van Duppen⁴, G. Rainovski⁵, C. Raison², J. Cubiss², M. Monthery², R. Harding², B. Andel⁶, S. Antalic⁶, J. Benito³, J.L. Herraiz³, V. Snchez-Tembleque³, J.M. Udas³, V. Vedia³, C. Mihai¹, A. Negret¹, F. Rotaru¹, S. Pascu¹, R. Mărginean¹, R. Mihai¹, C. Costache¹, A. Turturica¹, C. Sotty¹, M. Stryjczyk⁴, K. Rezynkina⁴, H. De Witte⁴, D. Kocheva⁵, R. Zdarova⁵, K. Glednishki⁵, A. E. Barzakh⁷, V. Fedosseev⁸, B.A. Marsh⁸, G. Georgiev⁹, I. Tsekanovich¹⁰, G. Benzoni¹¹, A. Illana¹², J.J Valiente-Dobon¹², A. Gottardo¹² Z. Podolyak¹³, M. Brunet¹³, J.M. Régis¹⁴, V. Karayonchev¹⁴, J. Jolie¹⁴, L. Knafla¹⁴, A. Esmaylzadeh¹⁴, N. Warr¹⁴, A. Algora¹⁵, A.I. Morales¹⁵, C. Henrich¹⁶, I. Homm¹⁶, G.F. Martinez¹⁶, H.-B. Rhee¹⁶, P.T. Greenlees^{17,18}, P. Rahkila^{17,18}, T. Grahn^{17,18} and J. Pakarinen^{17,18} $^{^1}$ "Horia Hulubei" National Institute for R&D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania ² University of York, Department of Physics, York YO10 5DD, N Yorkshire, United Kingdom ³ Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense, CEI Moncloa, 28040 Madrid, Spain ⁴KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium ⁵Faculty of Physics, St. Kliment Ohridski University of Sofia, BG-1164 Sofia, Bulgaria $^{^6} Comenius\ University,\ Department\ of\ Nuclear\ Physics\ \&\ Biophysics,\ Bratislava\ 84248,\ Slovakia$ ⁷Petersburg Nuclear Physics Institute, Gatchina, Russia ⁸CERN, Geneva, Switzerland ⁹ CSNSM-IN2P3-CNRS, Universit Paris-Sud, Orsay, France ¹⁰CENBG, Gradigan, Bordeaux, France ¹¹Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy ¹²Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy ¹³University of Surrey, Dept. Phys, Guildford GU2 7XH, Surrey, England ¹⁴IKP, University of Cologne, Zlpicher Str. 77, D-50937 Cologne, Germany ¹⁵Instituto de Fsica Corpuscular, CSIC and University of Valencia, E-46071 Valencia, Spain $^{{}^{16}}Institut\;fur\;Kernphysik,\;Technische\;Universitat\;Darmstadt,\;64289\;Darmstadt,\;Germany$ ¹⁷University of Jyvaskyla, Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaskyla, Finland ¹⁸Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland Fig. 3. The decay scheme of ²¹⁶Bi