Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Probing the structure of yrast states in even-even 214,216,218Po through fast-timing measurements following the β-decay of 214,216,218Bi

Spokespersons:

R. Lica, IFIN-HH (RO)
A.N. Andreyev, University of York (UK)
Contents

• Physics motivation
 • Previous studies of isomeric states/seniority scheme in even-even Po
 • Recent shell-model calculations
 • β-decay studies of 214,216,218Bi at ISOLDE – need for fast-timing

• Experimental description
 • Beam production
 • Fast-timing measurements at the ISOLDE Decay Station
 • Rate estimations

• Beamtime request
Physics motivation

- Po isotopes
- Text-book example for studying the seniority scheme
- Presence of $\pi(h_{9/2})$ 8$^+$ isomers in the even-even Po
Physics motivation

- Po isotopes
 - textbook example for studying the seniority scheme
 - presence of $\pi(h_{9/2})$ 8^+ isomers in the even-even Po
- Po isotopes with $N>126$
 - shell-model test using ^{208}Pb as an inert core
 - study the filling of the $\nu g_{9/2}$ orbital

$\rightarrow \alpha + ^{208}\text{Pb}$ cluster configurations in ^{212}Po
Physics motivation

- Po isotopes
 - Text-book example for studying the seniority scheme
 - Presence of $\pi(h_{9/2})$ 8$^+$ isomers in the even-even Po
- Po isotopes with $N>126$
 - Shell-model test using ^{208}Pb as an inert core
 - Study the filling of the $\nu g_{9/2}$ orbital

$^{214,216,218}\text{Po}$
 - Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams

$\rightarrow \alpha^{+208}\text{Pb}$ cluster configurations in ^{212}Po
Physics motivation

- Po isotopes
 - text-book example for studying the seniority scheme
 - presence of $\pi(h_{9/2})$ 8^+ isomers in the even-even Po
- Po isotopes with $N>126$
 - shell-model test using 208Pb as an inert core
 - study the filling of the $\nu_{g_{9/2}}$ orbital

214,216,218Po

- Lack of experimental data for the heavier Po isotopes due to difficulties in producing them using stable beams
- Recent measurement by Astier et al. [1] of the 8^+_1 state half-life $T_{1/2} = 13(1)$ ns in 214Po indicating a similar excitation mechanism as for 210Pb, one-neutron-pair breaking

214Po

- z: 84 n: 130
- $T_{1/2}$: 164.3 ms 2.0
- β: 99.9977% 2.3E-4%
- α: 100%

216Po

- z: 84 n: 132
- $T_{1/2}$: 0.145 ± 0.002
- β: 95%
- α: 100%

218Po

- z: 84 n: 134
- $T_{1/2}$: 0.012
- β: 99.80%
- α: 0.20%

214Bi

- z: 83 n: 130
- $T_{1/2}$: 45.59 m 0.06
- β: 97.80%
- α: 2.20%

216Bi

- z: 83 n: 132
- $T_{1/2}$: 7.6 m 0.2
- β: 100%

218Bi

- z: 83 n: 134
- $T_{1/2}$: 3.088 m 0.012
- β: 71.8%
- α: 28.2%
Physics motivation

We updated the B(E2) figure with known experimental data for Po isotopes (ENSDF + Kocheva et al. [1,2])

→ A staggering can be noticed around 210Po for the $8^+ \rightarrow 6^+$ transition probability (present also for the 6^+, 4^+, 2^+ cases?)

→ The large value measured in 212Po was proposed to be due to the $\alpha + ^{208}$Pb cluster structures [A. Astier et al., Eur. Phys. J. A46, 165-185 (2010)]

→ The first four excited states measured in 216,218Po have similar excitation energies to those known in 214Po, indicating a structural similarity (needs to be confirmed by B(E2) values in 216,218Po)

Physics motivation

Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017]

\[\pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2}) \] - denoted by \(hfi \rightarrow gij \), with interaction PBPKH [1].

\[\pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) \] - denoted by \(r5i \rightarrow r6j \), with interaction PBKH7 [2].

- Non-truncated calculations were performed for \(^{208-212}\text{Po}\). For the other, truncation must be applied, which requires tuning of the pairing part of the interaction.
- Excitations across the \(^{208}\text{Pb}\) shell closure were blocked.
- Transition rates were calculated with effective operators [3]

\[e_p=1.5 \; e; \; e_n=0.85 \; e; \; g_s=0.6 \; g_s^{\text{eff}}; \; g_m=1.115; \; g_v=0 \]

Physics motivation

Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017]

- Non-truncated calculations were performed for $^{208-212}$Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction.
- Excitations across the 208Pb shell closure were blocked.
- Transition rates were calculated with effective operators [3]

 \[e_p = 1.5 \; e; \; e_n = 0.85 \; e; \; g_f = 0.6 \; g^{\text{free}}; \; g_m = 1.115; \; g_{\pi} = 0 \]

Observations:

- For $N > 126$ the importance of truncation and the low-spin N=6 orbits is clearly visible in contrast to earlier statements that a single- or two-orbit model space for protons and neutrons is appropriate [4].
- The importance of precise new lifetime measurements for $^{212-218}$Po 6^+ and 8^+ states is clearly exhibited in the figure.

\[\pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2}) \] - denoted by $hfi-gij$, with interaction PBPKH [1].

\[\pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) \] - denoted by $r5i-r6j$, with interaction PBKH7 [2].

Shell model calculations were recently performed for selected transitions in the Po isotope chain for two model spaces and interactions: [H. Grawe, Private Communication, Oct 2017]

\[
\pi(h_{9/2}, f_{7/2}, i_{13/2}) \nu(p, f_{5/2}, i, g_{9/2}, j_{15/2}) \quad \text{denoted by hfi-gij, with interaction PBPKH [1].}
\]

\[
\pi(h_{9/2}, f, i_{13/2}, p) \nu(h_{9/2}, p, f, i, g, d, s_{1/2}, j_{15/2}) \quad \text{denoted by r5i-r6j, with interaction PBKH7 [2].}
\]

- Non-truncated calculations were performed for $^{208-212}$Po. For the other, truncation must be applied, which requires tuning of the pairing part of the interaction.
- Excitations across the 208Pb shell closure were blocked.
- Transition rates were calculated with effective operators [3]

\[
e_p=1.5 \, e; \quad e_n=0.85 \, e; \quad g_c=0.6 \, g^{\text{free}}; \quad g_n=1.115; \quad g_v=0
\]

Observations:

- For $N > 126$ the importance of truncation and the low-spin N=6 orbits is clearly visible in contrast to earlier statements that a single- or two-orbit model space for protons and neutrons is appropriate [4].
- The importance of precise new lifetime measurements for $^{212-218}$Po 6^+ and 8^+ states is clearly exhibited in the figure.

Conclusion:

$B(E2)$ values in the Po chain will be decisive to verify shell model interactions and disentangle the correlation of model space and interaction. A staggering except when crossing the N=126 shell closure is not really supported by shell model calculations.

β-decay studies of 214,216,218Bi at ISOLDE

214Bi
- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)
- direct identification and spectroscopy of an 8^+ isomer using RILIS+IDS
 (including HFS/isomer shift measurements, spin, decay pattern and half-life)

IDS 2017

MR-ToF 2016 – Ground state

Energy Gated Alpha (cps)

214Bi

214Big hfs
214Bim hfs
(new)
β-decay studies of 214,216,218Bi at ISOLDE

- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)
- direct identification and spectroscopy of an 8$^+$ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life)

Time distributions between the emissions of γ rays of 214Po showing either prompt coincidences [curves in red and green, panel (a)] or delayed ones corresponding to the decay of the 1583-keV state [curves in blue, panels (b), (c), and (d)].

$T_{1/2} = 13(1) \text{ ns using HPGe detectors}$ [1]

→ can be re-checked using fast-timing detectors

→ $B(E2; 8^+ \rightarrow 6^+) = 0.54(4) \text{ W.u.}$ used to estimate the $T_{1/2}$ of 8$^+$ states in 216,218Po

Lifetimes of 6$^+$, 4$^+$, 2$^+$ states can be accessed through fast-timing measurement.
β-decay studies of 214,216,218Bi at ISOLDE

214Bi
- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)
- direct identification and spectroscopy of an 8$^+$ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life)

216Bi
- the decay populates clearly the yrast band up to the 8$^+$ state [1] but no lifetimes are known

β-decay studies of 214,216,218Bi at ISOLDE

214Bi
- HFS recently studied at ISOLDE (IS608: MR-ToF 2016 and IDS 2017)
- direct identification and spectroscopy of an 8$^+$ isomer using RILIS+IDS (including HFS/isomer shift measurements, spin, decay pattern and half-life)

216Bi
- the decay populates clearly the yrast band up to the 8$^+$ state [1] but no lifetimes are known

218Bi
- beam intensity of 44(8) ions/μC [2] using UCx target + RILIS
- similar decay level scheme as 216Bi but no known lifetimes

Beam production

- Use the same proven method: UCx target + RILIS [1,2]
- Yields recently extracted during IS608 at MR-ToF in 2016

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Rate estimate (ions/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{214}Bi</td>
<td>2×10^4</td>
</tr>
<tr>
<td>^{216}Bi</td>
<td>2×10^3</td>
</tr>
<tr>
<td>^{218}Bi</td>
<td>2×10^2</td>
</tr>
</tbody>
</table>

(2 μA proton current)

Beam production

- Use the same proven method: **UCX target + RILIS** [1,2]
- Yields recently extracted during IS608 at MR-ToF in 2016.
- Short-lived contaminants such as Fr can be easily removed using the pulsed release technique and **HRS** (instead of GPS used in 2017 at IDS)

Chart of nuclides for the isotopes north-east of 208Pb [1]

Isotope Rate estimate (ions/s)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Rate estimate (ions/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>214Bi</td>
<td>2×10^4</td>
</tr>
<tr>
<td>216Bi</td>
<td>2×10^3</td>
</tr>
<tr>
<td>218Bi</td>
<td>2×10^2</td>
</tr>
</tbody>
</table>

(2 μA proton current)

The pulsed release technique [1]: the different time scales for the α decay of the contaminants and the β^- decay under investigation allow for a selective suppression.

Fast-timing measurements at the ISOLDE Decay station

Ranges:
- Centroid shift method: - 10 ps - 100 ps
- Slope method: - 50 ps - 50 ns (or longer)

[H. Mach et al. NIM A 280, 49 (1989)]

Key Points:
- Well established technique at IDS since 2014 [1,2,3]
- Detection system comprising of:
 - 4 Clover HPGe - 7% abs. eff. at 500keV
 - 2 LaBr₃(Ce) - 3% abs. eff. at 500keV
 - 1 Plastic Scintillator - 20% abs. eff.

Example: lifetime measurement of 8^+ state in 218Po

\[\text{Rate} = 59\% \times 20\% \times 8\% \times 23\% \times 100 \text{ ions/s} \]
\[= 0.2 \text{ counts/s} \]
\[= 6.1 \times 10^3 \text{ counts/shift} \]

Observation: a conservative rate of 100 ions/s instead of 200 ions/s considering transmission to IDS (70-80\%) and beam downtime.
Example: lifetime measurement of 6^+ state in 218Po

<table>
<thead>
<tr>
<th>Level</th>
<th>Start (eff)</th>
<th>Stop (eff)</th>
<th>Cleaning gate (eff)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8^+</td>
<td>β (20%)</td>
<td>263.0 (2 x 4%)</td>
<td>385.7 or 425.5 or 509.7 (23%)</td>
</tr>
<tr>
<td>6^+ (2+,4+)</td>
<td>263.0 (4%)</td>
<td>385.7 (3%)</td>
<td>425.5 or 509.7 or β (14%+20%)</td>
</tr>
</tbody>
</table>

Rate = 59% * (4% * 3% * 2) * (14%+20%) * 100 ions/s
= 0.05 counts/s
= 1.4 * 10^3 counts/shift
Rate estimates

<table>
<thead>
<tr>
<th>Nucleus/Yield</th>
<th>$J^π$</th>
<th>$E_γ$ (keV)</th>
<th>$T_{1/2}$</th>
<th>Events/shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>214Po 10^4 ions/s</td>
<td>2^+_1</td>
<td>609.0</td>
<td>> 9 ps</td>
<td>4.9×10^4</td>
</tr>
<tr>
<td></td>
<td>4^+_1</td>
<td>405.4</td>
<td>> 68 ps</td>
<td>9.5×10^4</td>
</tr>
<tr>
<td></td>
<td>6^+_1</td>
<td>324.4</td>
<td>> 210 ps</td>
<td>1.7×10^5</td>
</tr>
<tr>
<td></td>
<td>8^+_1</td>
<td>244.1</td>
<td>13(1) ns [6]</td>
<td>7.7×10^5</td>
</tr>
<tr>
<td>216Po 10^3 ions/s</td>
<td>2^+_1</td>
<td>549.7</td>
<td>> 15 ps</td>
<td>5.9×10^3</td>
</tr>
<tr>
<td></td>
<td>4^+_1</td>
<td>418.8</td>
<td>> 58 ps</td>
<td>9.7×10^3</td>
</tr>
<tr>
<td></td>
<td>6^+_1</td>
<td>359.5</td>
<td>> 120 ps</td>
<td>1.7×10^4</td>
</tr>
<tr>
<td></td>
<td>8^+_1</td>
<td>223.4</td>
<td>~ 27 ns</td>
<td>7.6×10^4</td>
</tr>
<tr>
<td>218Po 10^2 ions/s</td>
<td>2^+_1</td>
<td>509.7</td>
<td>> 21 ps</td>
<td>6.5×10^2</td>
</tr>
<tr>
<td></td>
<td>4^+_1</td>
<td>425.5</td>
<td>> 52 ps</td>
<td>1.1×10^3</td>
</tr>
<tr>
<td></td>
<td>6^+_1</td>
<td>385.7</td>
<td>> 86 ps</td>
<td>1.4×10^3</td>
</tr>
<tr>
<td></td>
<td>8^+_1</td>
<td>263.0</td>
<td>~ 12 ns</td>
<td>6.1×10^3</td>
</tr>
</tbody>
</table>
Rate estimates

- Half-lives for yrast states in 214,216,218Po estimated using:
 - $\text{B(E2)} < 10 \text{ W.u.}$ for $2,4,6^+$ states
 - $\text{B(E2)} \sim 0.5 \text{ W.u.}$ [1] for 8^+ states

<table>
<thead>
<tr>
<th>Nucleus/Yield</th>
<th>J^π</th>
<th>E_γ (keV)</th>
<th>$T_{1/2}$</th>
<th>Events/shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>214Po</td>
<td>2$_1^+$</td>
<td>609.0</td>
<td>$>9 \text{ ps}$</td>
<td>4.9×10^4</td>
</tr>
<tr>
<td></td>
<td>4$_1^+$</td>
<td>405.4</td>
<td>$>68 \text{ ps}$</td>
<td>9.5×10^4</td>
</tr>
<tr>
<td></td>
<td>6$_1^+$</td>
<td>324.4</td>
<td>$>210 \text{ ps}$</td>
<td>1.7×10^5</td>
</tr>
<tr>
<td></td>
<td>8$_1^+$</td>
<td>244.1</td>
<td>$13(1) \text{ ns}$</td>
<td>7.7×10^5</td>
</tr>
<tr>
<td>216Po</td>
<td>2$_1^+$</td>
<td>549.7</td>
<td>$>15 \text{ ps}$</td>
<td>5.9×10^3</td>
</tr>
<tr>
<td></td>
<td>4$_1^+$</td>
<td>418.8</td>
<td>$>58 \text{ ps}$</td>
<td>9.7×10^3</td>
</tr>
<tr>
<td></td>
<td>6$_1^+$</td>
<td>359.5</td>
<td>$>120 \text{ ps}$</td>
<td>1.7×10^4</td>
</tr>
<tr>
<td></td>
<td>8$_1^+$</td>
<td>223.4</td>
<td>$\sim 27 \text{ ns}$</td>
<td>7.6×10^4</td>
</tr>
<tr>
<td>218Po</td>
<td>2$_1^+$</td>
<td>509.7</td>
<td>$>21 \text{ ps}$</td>
<td>6.5×10^2</td>
</tr>
<tr>
<td></td>
<td>4$_1^+$</td>
<td>425.5</td>
<td>$>52 \text{ ps}$</td>
<td>1.1×10^3</td>
</tr>
<tr>
<td></td>
<td>6$_1^+$</td>
<td>385.7</td>
<td>$>86 \text{ ps}$</td>
<td>1.4×10^3</td>
</tr>
<tr>
<td></td>
<td>8$_1^+$</td>
<td>263.0</td>
<td>$\sim 12 \text{ ns}$</td>
<td>6.1×10^3</td>
</tr>
</tbody>
</table>

Within the reach of the fast-timing setup available at IDS (> 10 ps)

Beamtime request: **7 shifts**

- **2 shifts** for ^{218}Bi (in order to reach a statistics > 1000 counts for the time distribution of the 2_1^+ state)
- **1 shift** for ^{216}Bi
- **1 shift** for ^{214}Bi (the incoming rate will be reduced in order to avoid pile-up effects)
- **1 shift** for online fast-timing calibrations using implantation sources (eg. ^{138}Cs, ^{88}Rb, ^{140}Ba)
- **2 shifts** for laser tuning

Table

<table>
<thead>
<tr>
<th>Nucleus/Yield</th>
<th>J^π</th>
<th>E_γ (keV)</th>
<th>$T_{1/2}$</th>
<th>Events/shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{218}Po</td>
<td>2_1^+</td>
<td>609.0</td>
<td>>9 ps</td>
<td>4.9×10^4</td>
</tr>
<tr>
<td>^{218}Po</td>
<td>4_1^+</td>
<td>405.4</td>
<td>>68 ps</td>
<td>9.5×10^4</td>
</tr>
<tr>
<td>^{218}Po</td>
<td>6_1^+</td>
<td>324.4</td>
<td>>210 ps</td>
<td>1.7×10^5</td>
</tr>
<tr>
<td>^{218}Po</td>
<td>8_1^+</td>
<td>244.1</td>
<td>13(1) ns [6]</td>
<td>7.7×10^5</td>
</tr>
<tr>
<td>^{216}Po</td>
<td>2_1^+</td>
<td>549.7</td>
<td>>15 ps</td>
<td>5.9×10^3</td>
</tr>
<tr>
<td>^{216}Po</td>
<td>4_1^+</td>
<td>418.8</td>
<td>>58 ps</td>
<td>9.7×10^3</td>
</tr>
<tr>
<td>^{216}Po</td>
<td>6_1^+</td>
<td>359.5</td>
<td>>120 ps</td>
<td>1.7×10^4</td>
</tr>
<tr>
<td>^{216}Po</td>
<td>8_1^+</td>
<td>223.4</td>
<td>~27 ns</td>
<td>7.6×10^4</td>
</tr>
<tr>
<td>^{218}Po</td>
<td>2_1^+</td>
<td>509.7</td>
<td>>21 ps</td>
<td>6.5×10^2</td>
</tr>
<tr>
<td>^{218}Po</td>
<td>4_1^+</td>
<td>425.5</td>
<td>>52 ps</td>
<td>1.1×10^3</td>
</tr>
<tr>
<td>^{218}Po</td>
<td>6_1^+</td>
<td>385.7</td>
<td>>86 ps</td>
<td>1.4×10^3</td>
</tr>
<tr>
<td>^{218}Po</td>
<td>8_1^+</td>
<td>263.0</td>
<td>~12 ns</td>
<td>6.1×10^3</td>
</tr>
</tbody>
</table>

Observation:

If approved, this experiment can be scheduled together with the remaining 3 shifts of the IS608 experiment (HFS measurements of $^{216,218}\text{Bi}$) because of the following considerations:
- both measurements can be performed using the same fast-timing configuration of IDS
- the stable beam and RILIS tuning will be done only once
Collaboration

R. Lică¹, A.N. Andreyev², L.M. Fraile³, N. Mărginean⁴, P. Van Duppen⁴, G. Rainovski⁵, C. Raison², J. Cubiss², M. Monthery², R. Harding², B. Andel⁶, S. Antalic⁶, J. Benito³, J.L. Herraiž³, V. Sánchez-Tembleque³, J.M. Udas³, V. Vedia³, C. Mihai¹, A. Negret¹, F. Rotaru¹, S. Pascu¹, R. Mărginean¹, R. Mihai¹, C. Costache¹, A. Turturica¹, C. Sotty¹, M. Stryjczyk⁴, K. Rezynkina⁴, H. De Witte⁴, D. Kocheva⁵, R. Zdarova⁵, K. Glednishki⁵, A. E. Barzakh⁷, V. Fedosseev⁸, B.A. Marsh⁸, G. Georgiev⁹, I. Tsekanovich¹⁰, G. Benzoni¹¹, A. Illana¹², J.J. Valiente-Dobon¹², A. Gottardo¹² Z. Podolyak¹³, M. Brunet¹³, J.M. Régis¹⁴, V. Karayonchev¹⁴, J. Jolie¹⁴, L. Knafla¹⁴, A. Esmaylzadeh¹⁴, N. Warti¹⁴, A. Algora¹⁵, A.I. Morales¹⁵, C. Henrich¹⁶, I. Hommi¹⁶, G.F. Martinez¹⁶, H.-B. Rhee¹⁶, P.T. Greenlees¹⁷,¹⁸, P. Rahkila¹⁷,¹⁸, T. Grahn¹⁷,¹⁸ and J. Pakarinen¹⁷,¹⁸

¹“Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, RO-077125 Bucharest, Romania
²University of York, Department of Physics, York YO10 5DD, N Yorkshire, United Kingdom
³Grupo de Física Nuclear, Facultad de CC. Fisicas, Universidad Complutense, CEI Moncloa, 28040 Madrid, Spain
⁴KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
⁵Faculty of Physics, St. Kliment Ohridski University of Sofia, BG-1164 Sofia, Bulgaria
⁶Comenius University, Department of Nuclear Physics & Biophysics, Bratislava 84248, Slovakia
⁷Petersburg Nuclear Physics Institute, Gatchina, Russia
⁸CERN, Geneva, Switzerland
⁹CSNSM-IN2P3-CNRS, Université Paris-Sud, Orsay, France
¹⁰CENBG, Gradignan, Bordeaux, France
¹¹Istituto Nazionale di Fisica Nucleare, Sezione di Milano, I-20133 Milano, Italy
¹²Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy
¹³University of Surrey, Dept. Phys. Guildford GU2 7XH, Surrey, England
¹⁴IKP, University of Cologne, Zülpicher Str. 77, D-50937 Cologne, Germany
¹⁵Instituto de Física Corpuscular, CSIC and University of Valencia, E-46071 Valencia, Spain
¹⁶Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
¹⁷University of Jyväskyla, Department of Physics, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland
¹⁸Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland
Fig. 3. The decay scheme of 216Bi.