
Real-time ROOT object merging in the HLT
M.Krzewicki

FIAS

1

Simplified dataflow schema

2

Processing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskAnalysis task

merger

Processing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskProcessing taskMonitoring task

merger

merger (DQM proxy)

OVERWATCH

DQM

LHC

online HLT viewers

Processing

PUSH-PULL

PUSH-PULL

REQ-REP

REQ-REPPUB-SUB

REQ-REP
DIM

• Data producers push data to mergers continuously (almost).
• Analysis tasks are offline QA/calibration tasks running in AnalysisManager-like env @HLT (*)
• Monitoring tasks is usually code written to run synchronously in the HLT framework.

• All communication is handled by ZMQ (via AliZMQhelpers lib) - following a simple data model.
• O2-like devices exchanging data asynchronously.

Pa
ra

lle
l d

at
a

pr
od

u
ce

rs

M.Krzewicki

Data model

• Data is contained in a multi-part ZeroMQ message.
• Each part is a binary buffer, annotated by a header (headers are separate parts).
• Header determines the data type:
• ROOT - a ROOT object, to be deserialized and merged.
• CONFIG - A configuration/command string.
• INFO - some metadata, currently run number, HLT running state
• formatted as a “;” delimited string of “<key>=<value>” pairs (is a subset of the ECS string).

• ROOTSTRI - ROOT schema information.
• Binary compatible with current O2 data model - compatible with O2 devices at data exchange level!
• Single message can contain any number of ROOT objects, other data etc.

3

C
O

N
FI

G

commands,
(re-)configuration IN

FO run=123123;

RO
O

T serialized ROOT
data RO

O
T

serialized ROOT data

M.Krzewicki

ZMQROOTmerger

• Fully asynchronous, data driven architecture.
• main event loop steered by ZeroMQ events (data in).
• Everything is data, including configuration and commands.

• Usually 4 ZMQ sockets defined (messaging pattern chosen at configuration time):
• data in (usually PULL or SUB)
• data out (usually PUSH or PUB)
• monitoring (usually REP or PUB)
• {sync (PUB or SUB only), redundancy for condition changes (EOR,SOR etc.)}

• Data, configuration and commands can come in(or out) on any of these (except sync).

• Acts as a server either replying to requests or pushing data at specified intervals.

4

M.Krzewicki

Merger architecture

• Asynchronous, data driven processing layer is always in a consistent state (no need for an explicit state machine).
• Incoming objects are merged into the state (merger state is metadata + merged data) one-by-one using name matching.
• Data OUT must be triggered:
• externally by a CONFIG data block with a send command (ex. a thread that triggers a send on an OUT socket periodically).
• by sending a REQuest - by default the reply will contain the full merger state (unless it contains a CONFIG block with other instructions).

5

Config+ command
parser

Data unpacker

object “name1”

object “name2”

object “name3”

object dispatch
 + merge

(name based)
data dispatch
(type based)

ROOT schema

ZeroMQ layer

Processing layer

input
socket

sync
socket

monitoring
socket

output
socket

runtime
information

}Data in
Data out

ROOT

IN
FO

ROOTSTRI

Metadata parser

CO
N

FI
G

Schema unpacker

state

M.Krzewicki

Constraints for data producers

• Data accumulated at producer level for a prescribed time duration (~10s)
• When pushing data out, the producer NEEDS to reset (drop all data) - data is MOVED to the merger, not

copied.
• otherwise we would be merging same data many times (or need some complicated logic).

• For stuff deriving from AliAnalysisTask user must overload ResetOutputData().
• Tasks ported to use the “V” virtual interfaces to ESD/AOD data (there is no AliESDEvent in the HLT).
• Steered by the HLT framework (AliHLTAnalysisManager) for QA and calibration tasks.
• this is not yet in master, has been running online for over a year, code in ALICEHLT AliRoot and

AliPhysics dev and prod branches.

• HLT framework always adds run metadata to each message.

6

M.Krzewicki

Input/output data considerations (for merging)

• Input data is:
• TH1, any number of those.
• TH1 wraped in (nested) TCollections (TList, TObjArray).
• User objects (e.g. outputs of AliAnalysisTask, people put anything in there), usually in a structure of

TCollections.
• We always merge like-named objects - object names UNIQUE!

• Output data:
• Depends on the use case:
• Same structure as input data (default).
• Unpacked histograms (and other drawable objects) - makes life on the (QA) processing end easier
• also performance benefits (see later slides).

7

M.Krzewicki

ROOT object merging caveats

• Built-in ROOT merging mechanism using TMethodCall slow, using the interpreter (also reported slow on ROOT 6).
• Better solution: use RTTI (we use dynamic_cast, although builtin ROOT RTTI is a bit faster!).
• dynamic_cast<TH1*>, then call TH1::Merge()
• What to do with custom objects?
• Derive from AliMergeable and overload Merge().

• TCollection::Merge() falls back to slow TMethodCall!
• solution: unpack first (that is fast) then merge unpacked objects (ideally all TH1 and AliMergeable).
• PROBLEM: TCollection ownership! A non-owning collection stays non-owning after transport -> in general this means

mem leak.
• SOLUTION: AliHLTList and AliHLTobjArray - become owner after deserialize.
• they are just TList and TObjArray, but with safe streaming behaviour.

• Custom objects NEED to be streaming safe AND not leak memory - it is unfortunately out of our control.
• Policy: if you leak, you’re out!

8

M.Krzewicki

Unpacking objects

• In reality we always unpack QA objects to have a consistent and easy to visualize data set (histograms only).
• User objects overload AliMergeable::GetListOfDrawableObjects() to aid unpacking (if wanted).
• when unpacking we rename objects:
• TCollections have a name.
• unpacked objects renamed to: “<collection name 1>/<collection name 2>/…/<object name>”
• Path-like, easy to parse.
• Easier to ensure name uniqueness (only unpacked and renamed objects are dispatched to mergers).
• When unpacking (recursively) we get to all levels TCollections and can clean up properly.
• Without unpacking this mostly leads to mem leaks.
• Better to use special stream safe HLT variants (AliHLTList, AliHLTObjArray).

9

M.Krzewicki

Other features

Bunch of useful features which proved best to be implemented in the merger itself:

• Proxy mode: incoming objects replace old ones instead of being merged.
• Used for DQM proxy - DQM can not dynamically adjust during run, needs full list of histograms at SOR.
• Histograms are cleared at some condition (e.g. change of run) instead of deleted.

• State is persistent:
• When killed or restarted the state is persisted on disk and loaded automatically - no loss of statistics.

• Regex object selection - a subset of objects can be sent (on per-request basis), no need to eat too much
bandwidth all the time.

10

M.Krzewicki

Example

• Subset of data available in the DQM
merger (proxy) - selection regex
visible below in the window.

• Metadata displayed in window title.

11

M.Krzewicki

Code

• The ZMQ infrastructure (including merger, histogram viewer, dummy histogram producer, examples, etc.) is
in current master (needs zeromq to compile).
• helper lib: HLT/ZMQ/AliZMQhelpers.h
• merger: HLT/BASE/util/ZMQROOTmerger.cxx
• viewer: HLT/BASE/util/ZMQhistViewer.cxx
• dummy histogram producer: HLT/BASE/util/ZMQhistSource.cxx
• binaries installed in $PATH: ZMQhistSource, ZMQROOTmerger, ZMQhistViewer
• run without arguments for options.

• example script showing the async features: $ALICE_ROOT/HLT/exa/exampleZMQchain.sh
• starts a number of data sources, a proxy, a merger and a viewer.

12

