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Simplified dataflow schema
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• Data producers push data to mergers continuously (almost). 
• Analysis tasks are offline QA/calibration tasks running in AnalysisManager-like env @HLT (*) 
• Monitoring tasks is usually code written to run synchronously in the HLT framework. 

• All communication is handled by ZMQ (via AliZMQhelpers lib) - following a simple data model. 
• O2-like devices exchanging data asynchronously.
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Data model

• Data is contained in a multi-part ZeroMQ message. 
• Each part is a binary buffer, annotated by a header (headers are separate parts). 
• Header determines the data type: 
• ROOT - a ROOT object, to be deserialized and merged. 
• CONFIG - A configuration/command string. 
• INFO - some metadata, currently run number, HLT running state 
• formatted as a “;” delimited string of “<key>=<value>” pairs (is a subset of the ECS string). 

• ROOTSTRI - ROOT schema information. 
• Binary compatible with current O2 data model - compatible with O2 devices at data exchange level! 
• Single message can contain any number of ROOT objects, other data etc.
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ZMQROOTmerger

• Fully asynchronous, data driven architecture. 
• main event loop steered by ZeroMQ events (data in). 
• Everything is data, including configuration and commands. 

• Usually 4 ZMQ sockets defined (messaging pattern chosen at configuration time): 
• data in (usually PULL or SUB) 
• data out (usually PUSH or PUB) 
• monitoring (usually REP or PUB) 
• {sync (PUB or SUB only), redundancy for condition changes (EOR,SOR etc.)} 

• Data, configuration and commands can come in(or out) on any of these (except sync). 

• Acts as a server either replying to requests or pushing data at specified intervals.
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Merger architecture

• Asynchronous, data driven processing layer is always in a consistent state (no need for an explicit state machine). 
• Incoming objects are merged into the state (merger state is metadata + merged data) one-by-one using name matching. 
• Data OUT must be triggered: 
• externally by a CONFIG data block with a send command (ex. a thread that triggers a send on an OUT socket periodically). 
• by sending a REQuest - by default the reply will contain the full merger state (unless it contains a CONFIG block with other instructions).

5

Config+ command 
parser

Data unpacker

object “name1”

object “name2”

object “name3”

object dispatch 
 + merge 

(name based)
data dispatch 
(type based)

ROOT schema

ZeroMQ layer

Processing layer

input 
socket

sync 
socket

monitoring 
socket

output 
socket

runtime 
information

}Data in
Data out

ROOT

IN
FO

ROOTSTRI

Metadata parser

CO
N

FI
G

Schema unpacker

state



M.Krzewicki

Constraints for data producers

• Data accumulated at producer level for a prescribed time duration (~10s) 
• When pushing data out, the producer NEEDS to reset (drop all data) - data is MOVED to the merger, not 

copied. 
• otherwise we would be merging same data many times (or need some complicated logic). 

• For stuff deriving from AliAnalysisTask user must overload ResetOutputData(). 
• Tasks ported to use the “V” virtual interfaces to ESD/AOD data (there is no AliESDEvent in the HLT). 
• Steered by the HLT framework (AliHLTAnalysisManager) for QA and calibration tasks. 
• this is not yet in master, has been running online for over a year, code in ALICEHLT AliRoot and 

AliPhysics dev and prod branches. 

• HLT framework always adds run metadata to each message.
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Input/output data considerations (for merging)

• Input data is: 
• TH1, any number of those. 
• TH1 wraped in (nested) TCollections (TList, TObjArray). 
• User objects (e.g. outputs of AliAnalysisTask, people put anything in there), usually in a structure of 

TCollections. 
• We always merge like-named objects - object names UNIQUE! 

• Output data: 
• Depends on the use case: 
• Same structure as input data (default). 
• Unpacked histograms (and other drawable objects) - makes life on the (QA) processing end easier 
• also performance benefits (see later slides).
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ROOT object merging caveats

• Built-in ROOT merging mechanism using TMethodCall slow, using the interpreter (also reported slow on ROOT 6). 
• Better solution: use RTTI (we use dynamic_cast, although builtin ROOT RTTI is a bit faster!). 
• dynamic_cast<TH1*>, then call TH1::Merge() 
• What to do with custom objects? 
• Derive from AliMergeable and overload Merge(). 

• TCollection::Merge() falls back to slow TMethodCall! 
• solution: unpack first (that is fast) then merge unpacked objects (ideally all TH1 and AliMergeable). 
• PROBLEM: TCollection ownership! A non-owning collection stays non-owning after transport -> in general this means 

mem leak. 
• SOLUTION: AliHLTList and AliHLTobjArray - become owner after deserialize. 
• they are just TList and TObjArray, but with safe streaming behaviour. 

• Custom objects NEED to be streaming safe AND not leak memory - it is unfortunately out of our control. 
• Policy: if you leak, you’re out!
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Unpacking objects

• In reality we always unpack QA objects to have a consistent and easy to visualize data set (histograms only). 
• User objects overload AliMergeable::GetListOfDrawableObjects() to aid unpacking (if wanted). 
• when unpacking we rename objects: 
• TCollections have a name. 
• unpacked objects renamed to: “<collection name 1>/<collection name 2>/…/<object name>” 
• Path-like, easy to parse. 
• Easier to ensure name uniqueness (only unpacked and renamed objects are dispatched to mergers). 
• When unpacking (recursively) we get to all levels TCollections and can clean up properly. 
• Without unpacking this mostly leads to mem leaks. 
• Better to use special stream safe HLT variants (AliHLTList, AliHLTObjArray).
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Other features

Bunch of useful features which proved best to be implemented in the merger itself: 

• Proxy mode: incoming objects replace old ones instead of being merged. 
• Used for DQM proxy - DQM can not dynamically adjust during run, needs full list of histograms at SOR. 
• Histograms are cleared at some condition (e.g. change of run) instead of deleted. 

• State is persistent: 
• When killed or restarted the state is persisted on disk and loaded automatically - no loss of statistics. 

• Regex object selection - a subset of objects can be sent (on per-request basis), no need to eat too much 
bandwidth all the time.
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Example

• Subset of data available in the DQM 
merger (proxy) - selection regex 
visible below in the window. 

• Metadata displayed in window title.
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Code

• The ZMQ infrastructure (including merger, histogram viewer, dummy histogram producer, examples, etc.) is 
in current master (needs zeromq to compile). 
• helper lib: HLT/ZMQ/AliZMQhelpers.h 
• merger: HLT/BASE/util/ZMQROOTmerger.cxx 
• viewer: HLT/BASE/util/ZMQhistViewer.cxx 
• dummy histogram producer: HLT/BASE/util/ZMQhistSource.cxx 
• binaries installed in $PATH: ZMQhistSource, ZMQROOTmerger, ZMQhistViewer 
• run without arguments for options. 

• example script showing the async features: $ALICE_ROOT/HLT/exa/exampleZMQchain.sh 
• starts a number of data sources, a proxy, a merger and a viewer.
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