

PIC 2018 − XXXVII International Symposium on Physics in Collision Bogotá, Colombia 11-15 September 2018

Solar Neutrino Measurements

Andrea Pocar University of Massachusetts, Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Andrea Pocar – UMass Amherst

XXXVIII Physics in Collision 2018

Outline

Solar neutrinos

- fusion processes in the Sun
- solar neutrino milestones
- the solar neutrino puzzle
- running experiments

Recent results

- SuperK-IV
- Borexino

Outlook

CNO solar neutrinos
 high-precision measurements
 (SuperNovae and multi-messenger astrophysics)

Solar fusion and neutrino emission

H. Bethe (1906-2005)

$$13C \xrightarrow{(p,\gamma)} 14N \xrightarrow{(p,\alpha)} 17O$$

$$\beta^{+} \uparrow (p,\gamma) \downarrow \beta^{+} \uparrow$$

$$13N \xrightarrow{(p,\gamma)} 15O \xrightarrow{(p,\gamma)} 17O$$

$$\beta^{+} \uparrow (p,\gamma) \uparrow \beta^{+} \uparrow$$

$$12C \xrightarrow{(p,\alpha)} 15N \xrightarrow{(p,\gamma)} 16O$$

 $4p \rightarrow {}^{4}\text{He} + 2e^{+} + (24.69 + 2m_ec^{2}) \,\text{MeV}$

 $\langle E_{
u} \rangle \sim 0.53 \, {\rm MeV}$ (~2% of the total energy)

Andrea Pocar – UMass Amherst

The Solar Neutrino "Puzzle"

Atmospheric neutrino oscillations

VOLUME 81, NUMBER 8

PHYSICAL REVIEW LETTERS

24 AUGUST 1998

Evidence for Oscillation of Atmospheric Neutrinos

Y. Fukuda,¹ T. Hayakawa,¹ E. Ichihara,¹ K. Inoue,¹ K. Ishihara,¹ H. Ishino,¹ Y. Itow,¹ T. Kajita,¹ S. Kasuga,¹ K. Kobayashi,¹ Y. Kobayashi,¹ Y. Koshio,¹ M. Miura,¹ M. Nakahata,¹ S. Nakayama,¹ K. Okumura,¹ N. Sakurai,¹ M. Shiozawa,¹ Y. Suzuki,¹ Y. Takeuchi,¹ Y. Totsuka,¹ S. Yamada,¹ M. F.

Andrea Pocar — UMass Amherst

XXXVIII Physics in Collision 2018

Solar v oscillations

2002:

by exploiting 2 different reactions on deuterium, the SNO experiment proved that v_e produced in fusion reactions in the sun have turned (oscillated) into $v_{\mu,\tau}$ when they are detected on earth

80

60

40

-150

XXXVIII Physics in Collision 201

Neutrino picture of the Sun by SuperK using B8 solar neutrinos

50

100

150

-50

1 kton of heavy water target

solar, atmospheric, reactor, beam neutrinos build a picture of the oscillation of three active flavours

$$\delta m_{12}^2 \sim 7.5 \times 10^{-5} \text{eV}^2$$
$$\sin^2 \theta_{12} \sim 0.3$$
$$\delta m_{23}^2 \sim 2.4 \times 10^{-3} \text{eV}^2$$
$$\sin^2 \theta_{23} \sim 0.4$$
$$\sin^2 \theta_{13} \sim 0.02$$

neutrino oscillations firmly established

the MSW-LMA solution for solar neutrinos predicts an energy-dependent survival probability for electron neutrinos

Super-Kamiokande detector

http://www-sk.icrr.u-tokyo.ac.jp/sk/

Inner Detector (ID) PMT: ~11100 (SK-I,III,IV), ~5200 (SK-II) **Outer Detector (OD) PMT: 1885**

50 kton water

- ~2m OD viewed by 8-inch PMTs
- 32kt ID viewed by 20-inch PMTs
- 22.5kt fid. vol. (2m from wall)
- SK-I: April 1996~
- Refurbishment work is ongoing

Physics targets: Nucleon decay search Neutrino oscillation study Astrophysical neutrino search

6

10

from Y. Takeuchi @RICH18

Solar v oscillation results

- Quadratic fit of SK spectrum is consistent with solar Δm_{21}^2 within ~1.2 σ and disfavors KamLAND Δm_{21}^2 by ~2.0 σ .
- ~2.0 σ level tension in Δm_{21}^2 between solar global analysis and KamLAND is still remaining.

Apr 2018 Preliminary SK 5695 days

- Designed to solve the solar neutrino puzzle by finding Be-7 neutrinos
- After SuperK, SNO established neutrino oscillations:
 - precision neutrino oscillation studies
 - precision solar physics
- Has, in a way, become a standard against which to compare very large, low background experiments

Borexino

<u>Scintillator:</u> 270 t PC+PPO (1.5g/l) in a 150μm thick *Inner nylon vessel* (R=4.25m)

<u>Buffer region:</u> PC+DMP quencher (5g/l) 4.25m<R<6.75m

Outer nylon vessel: R=5.50m (²²²Rn Barrier)

Stainless Steel Sphere: R=6.75m 2212 8" PMTs with light guide cone. 1350m³

 $\frac{\textit{Water tank:}}{\gamma \text{ and n shield}} \\ \mu \text{ water cherenkov detector} \\ 208 \text{ PMTs in water} \\ 2100 \text{m}^3 \\ \end{cases}$

Borexino filled with scintillator

the full Borexino detector full, May 15 2007

Borexino milestone results

- geoneutrinos (2010, 2013, 2015)
- search for solar axions (2008, 2012)
- search for solar, astro anti-v (2011)

- test of electric charge conservation (2015)

- limits on v magnetic moment (2017)
- coinc. with GRB's (2016), GW's (2017)

with "irreducible" backgrounds

Extreme radio-purity

internal radioactivity

traces of radioisotopes in the scintillator (U,Th,⁴⁰K)

external y rays

from fluid buffer, steel sphere, PMT glass and light concentrators (⁴⁰K,²⁰⁸TI,²¹⁴Bi)

radon emanation

from the PMTs and steel sphere

cosmic muons

and their secondaries

cosmogenics

neutrons and radionuclides from μ spallation and hadronic showers

fast neutrons from external muons

Andrea Pocar – UMass Amherst

Spectral fit: multivariate approach

50% of β^+ decays produce orthopositronium (t_{1/2} ~ 3 ns) —> pulse shape discriminator based on:

- time shift
- multi-site (gammas)
- ionization density profile

Likelihood built combining:

- simultaneous fit of TFC-tagged and TFC-subtracted energy spectra
- pulse-shape parameter
- radial distribution

TFC subtracted energy spectrum

TFC tagged (C-11 rich) energy spectrum

 L_{PS}

Astroparticle Physics 97 (2018) 136–15

Fits performed with analytical and Monte Carlo pdf's are consistent

visible pep-shoulder

CNO v's are included in the fit, but they are ~degenerate with Bi-210

 $>5\sigma$ evidence of pep neutrinos R(CNO)<8.1 cpd/100 t (95% CL)

Dec 14 2011 — May 21 2016 Fit range: (0.19-2.93) MeV

Exposure: 1291.51 days x 71.3 tons

	Borexino e	xperimental results	В	16(GS98)-HZ	B16(AGSS09)-LZ		
Solar ν	Rate	Flux	Rate	Flux	Rate	Flux	
	[cpd/100 t]	$[{\rm cm}^{-2}{\rm s}^{-1}]$	$\left[\mathrm{cpd}/\mathrm{100t} \right]$	$[{\rm cm}^{-2}{\rm s}^{-1}]$	[cpd/100 t]	$[cm^{-2}s^{-1}]$	
pp	$134 \pm 10 \ ^{+6}_{-10}$	$(6.1 \pm 0.5 \stackrel{+0.3}{_{-0.5}}) \times 10^{10}$	131.0 ± 2.4	$5.98(1\pm0.006)\times10^{10}$	132.1 ± 2.3	$6.03(1\pm0.005)\times10^{10}$	
$^{7}\mathrm{Be}$	$48.3 \pm 1.1 \ ^{+0.4}_{-0.7}$	$(4.99 \pm 0.13 \stackrel{+0.07}{_{-0.10}}) \times 10^9$	47.8 ± 2.9	$4.93(1\pm0.06) imes10^9$	43.7 ± 2.6	$4.50(1\pm0.06) imes10^9$	
pep (HZ)	$2.43 \pm 0.36 \ ^{+0.15}_{-0.22}$	$(1.27 \pm 0.19 \stackrel{+0.08}{_{-0.12}}) \times 10^8$	2.74 ± 0.05	$1.44(1\pm0.009)\times10^{8}$	2.78 ± 0.05	$1.46(1\pm0.009) imes10^8$	
pep (LZ)	$2.65 \pm 0.36 \ ^{+0.15}_{-0.24}$	$(1.39 \pm 0.19 \stackrel{+0.08}{_{-0.13}}) \times 10^8$	2.74 ± 0.05	$1.44(1\pm0.009)\times10^{8}$	2.78 ± 0.05	$1.46(1\pm0.009)\times10^{8}$	
CNO	< 8.1 (95% C.L.)	$< 7.9 \times 10^8 (95\% \mathrm{C.L.})$	4.91 ± 0.56	$4.88(1\pm0.11)\times10^8$	3.52 ± 0.37	$3.51(1\pm0.10) imes10^8$	

Background	Rate	_		p_{1}	р	⁷ E	Be	pe	p	
0	[cpd/100 t]	S	Source of uncertainty	-%	+%	-%	+%	-%	+%	
^{14}C [Ba/100 t]	$\frac{11}{40.0+2.0}$	F	Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0	
851Z	10.0 ± 2.0	(Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4	
Kr	0.8 ± 1.8	I	Pile-up modeling	-2.5	0.5	0	0	0	0	
210 Bi	17.5 ± 1.9	F	Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0	
$^{11}\mathrm{C}$	26.8 ± 0.2	F	Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8	210Bi, E-scale, response
^{210}Po	260.0 ± 3.0	Ι	nclusion of ⁸⁵ Kr constraint	-2.2	2.2	0	0.4	-3.2	0	R(85Kr)<7.5 @ 95%
$\mathbf{F}_{\mathbf{x}\mathbf{t}} = 40 \mathbf{K}$	10 ± 0.6	Ι	Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05	<u>,</u>
$\mathbf{E}\mathbf{X}0, \mathbf{K}$	1.0 ± 0.0	S	Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05	о т
Ext. ²¹⁴ Bi	1.9 ± 0.3	F	Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6	าลระ
Ext. 208 Tl	3.3 ± 0.1	7	Fotal systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6	<i>w</i>

Improved measurement of B-8 neutrinos

arXiv:1709.00756

 $R_{LE} = 0.133^{+0.013}_{-0.013} (stat) {}^{+0.003}_{-0.003} (syst) \text{ cpd}/100 \text{ t}$ $R_{IIE} = 0.087^{+0.08}_{-0.010} (stat) ^{+0.005}_{-0.005} (syst) \text{ cpd}/100 \text{ t}$ $R_{LE+HE} = 0.220^{+0.015}_{-0.016} (stat) {}^{+0.006}_{-0.006} (syst) \text{ cpd}/100 \text{ t}$

All rates are fully compatible with and improve the uncertainty of the previously published Borexino results

	Previous BX results (cpd/100t)	This work (cpd/100t)	Uncertainty reduction
pp	144 ± 13 ± 10	134±10+6 -10	0.78
²Be	48.3± 2.0 ± 0.9	48.3±1.1+0.4 -0.7 2.7% pr	ecision 0.57
рер	3.1 ± 0.6 ± 0.3	(HZ) 2.43±0.36 ^{+0.15} -0.22 (LZ) 2.65±0.36 ^{+0.15} -0.24	0.61
8 B	0.217 ± 0.038 ± 0.008	0.220+0.015 _{-0.016} ± 0.006	0.42

Tests of the SSM

 Global fit to all solar + Kamland data (including the new ⁷Be result from BX)

$$f_{\rm Be} = \frac{\Phi({\rm Be})}{\Phi({\rm Be})_{\rm HZ}} = 1.01 \pm 0.03$$
$$f_{\rm B} = \frac{\Phi({\rm B})}{\Phi({\rm B})_{\rm HZ}} = 0.93 \pm 0.02$$

• a hint towards the HM :

LZ is excluded by BX data at 1.8 σ level

theoretical errors are dominating

$$R \equiv \frac{\langle {}^{3}\text{ He} + {}^{4}\text{ He} \rangle}{\langle {}^{3}\text{ He} + {}^{3}\text{ He} \rangle} = \frac{2\phi({}^{7}\text{Be})}{\phi(\text{pp}) - \phi({}^{7}\text{Be})}$$
$$R(HZ) = 0.180 \pm 0.011$$
$$R(LZ) = 0.161 \pm 0.010$$

from pp and Be-7 measurements:

Be-7 seasonal modulation

Towards a CNO solar neutrino measurement

 CNO solar neutrinos: the direct measurement of their rate could help solve the solar metallicity controversy surrounding the Standard Solar Model (⁷Be (12% difference) and CNO (50-60% difference))

- supported Po-210 determines constrains residual Bi-210
- attempts plagued by fluid convection causing Po-210 mixing

Detector thermal stabilization

 $\int_{0}^{10} \int_{0}^{10} \int_{0}^{10$

A very sensitive thermometer

• requires stable Bi-210, measured at 10-20%

v(CNO) median p-value (LZ/HZ hypothesis)

Outlook

1) SNO+ could measure CNO neutrinos without C-11 background (alternative to $0\nu\beta\beta$ program)

2) JUNO (20 kton LS): 10-20 times the Borexino statistics arXiv:1809.03821 (if LS is radio-pure enough)

3) A 300 ton LAr detector could:

- measure CNO solar neutrino flux with ~15% uncertainty
- measure Be-7 neutrinos at ~2%
- *measure pep neutrinos at better than 10%*

4) DUNE could make precision measurements of B-8 neutrinos through different scattering channels (Ar-40 nuclei, electrons)

- make precision measurements of B-8 neutrinos through different scattering channels (Ar-40 nuclei, electrons)
- precision day/night effect
- hep solar neutrinos

arXiv:1808.08232

JCAP08(2016)017

Summary

- Solar neutrinos essential in discovering the physics of neutrino oscillations
- Two solar neutrino experiments are currently running (SuperK and Borexino)
- Borexino has mapped out the entire pp solar fusion chain with high precision
- A measurement of CNO neutrinos would give us key knowledge of the Sun's metallicity
- Low-background techniques developed by Borexino have defined the standard for rare-event physics
- Some upcoming experiments could continue this exciting branch of science

Bogotá, 11-15 September, 2018

the Borexino collaboration

BOREXINO