

Semileptonic and Leptonic *B* Decays

Paoti Chang National Taiwan University Physics in Collision, 2018 11-15 September, Bogotá, Colombia

Introduction

- Flavor physics is mainly to test CKM.
 - Measure CKM parameters using various ways
 - Check consistency and look for anomalies
- Probe new physics directly (low mass dark photons) or indirectly (off-mass contribution)
- Hadron collider and B factory are complementary.

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

Dual of two B Factories

- Run at $\Upsilon(4S) \rightarrow B^0 \overline{B}^0 / B^+ B^-$ and $\Upsilon(5S) \rightarrow B_S^{(*)} \overline{B}_S^{(*)}$
- Clean environment; active particle identification
- Good performance to detect neutrals and neutrinos

Large Hadron Collider

- Large $b\overline{b}$ cross section
- Decays with neutrals or neutrinos are difficult.
- Large boost & excellent vertex detector
- LHCb
 - Active PID
 - Fixed-target type
- CMS and ATLAS
 - General purpose detector
 - Di-muon trigger

$|V_{cb}|$ and $|V_{ub}|$

- Inclusive decays: $X_{c,u} \ell v$
 - QCD correction for parton level decay rate.
 - Operator product expansion in α_s and Λ/m_b
- Exclusive decays: $D^{(*)}\ell \boldsymbol{\nu}, \pi\ell \boldsymbol{\nu}, \rho\ell \boldsymbol{\nu} \dots$
 - QCD contributions parametrized in form factors
 - Lattice QCD for low q^2 and LCSR for high q^2

Puzzle

• $|V_{cb}| = (40.5 \pm 1.5) \times 10^{-3}, 2.9\sigma$ discrepancy $|V_{ub}| = (4.09 \pm 0.39) \times 10^{-3}, 2.6\sigma$ discrepancy

New Measurements

•
$$|V_{cb}|: B \to D^* \ell \nu$$

- $|V_{\mu b}|$: Inclusive $B \to X_{\mu} e \nu$
- $|V_{ub}|: B \to \eta^{(\prime)} \ell \nu$ Hadronic tag
- Exclusive $B^0 \to D^{*-} \ell^+ \nu_{\ell}$

 $\frac{d\Gamma(B \to D^{*-}\ell^+\nu_{\ell})}{dwd\cos\theta_{\ell}d\cos\theta_{\nu}dx} = \frac{G_F^2|V_{cb}|^2}{48\pi^3}F(w,\theta_{\ell},\theta_{\nu},x)G(w)$

B to D^{*} form factor

 $w = \frac{M_B^2 + M_{D^*}^2 - q^2}{2M_D M_{D^*}}$

Phase space

$B \to D^* \ell \nu$ untagged

- Form factors
 - 1. Caprini, Lelouch, Neubert (CLN)
- arXiv: hep-ph/9712417
- Using theoretical assumptions to reduce number of free parameters that describe form factors. \Rightarrow for small data set

 $F(w, \theta_{\ell}, \theta_{\nu}, x) \Rightarrow \text{fit four parameter distributions to extract}$ three variables, $R_1(w), R_2(w), \rho(w)$

- 2. Buyd, Grinstein, Lebed (BGL) arXiv:hep-ph/9504235 $F(w, \theta_{\ell}, \theta_{\nu}, x)$ is written in the most generic parameterization with minimal assumptions
- Data sample $N(D^*e\nu) = 91381$ $N(D^*\mu\nu) = 89965$

Fit Results

• $|V_{cb}|$ from CLN Fit to extract ρ^2 , $R_1(1)$, $R_2(1)$ and $F(1)|V_{cb}|$.

 $|V_{cb}|$ from BGL Fit to extract coefficients of expansions and

 \bullet

New $|V_{cb}|$ Results

- $|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$
- $|V_{cb}| = (42.5 \pm 0.3 \pm 0.7 \pm 0.6) \times 10^{-3}$
- $|V_{cb}| = (38.4 \pm 0.2 \pm 0.6 \pm 0.6) \times 10^{-3}$
- Preliminary Inclusive Exclusive (BGL) Exclusive (CLN)

|V_{ub}|

PRD95, 072001 (2017)

- Untagged inclusive $X_u \ell v$
 - update of el. endpoint analysis
 - Use on- and off-resonance data
 - − Fit on electron momentum with X_uℓv and X_cℓv compon.
 − 4 theoretical framework

PRD96, 091102 (2017) b

- Search for $B \to \eta^{(\prime)} \ell \nu$
 - Understand $B \to X_u \ell \nu$
- Hadronic tag

 $\mathcal{B}(B \to \eta \ell \nu) = (4.2 \pm 1.1 \pm 0.3) \times 10^{-5}$ $\mathcal{B}(B \to \eta' \ell \nu) < 0.72 \times 10^{-4} @90\% \text{ C.L.}$ $|V_{ub}| = (3.59 \pm 0.58 \pm 0.13^{+0.29}_{-0.32}) \times 10^{-3}$

Lower $|V_{ub}|$ value except for BLNP

Status of $|V_{ub}|$

• $|V_{ub}| = (4.52 \pm 0.15 \pm 0.22) \times 10^{-3}$ Inclusive average • $|V_{ub}| = (3.65 \pm 0.09 \pm 0.11) \times 10^{-3}$ $B \to \pi \ell \nu$ average

Semileptonic and Leptonic B decays

Probe new Physics in $B \rightarrow D^* \tau \nu$

- Well understood in SM.
- Extract $|V_{cb}|$ and $|V_{ub}|$
- Probe physics beyond the SM. $R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu, \ell = e \text{ or } \mu)}$

- Accurate theoretic SM predictions. $R(D) = 0.299 \pm 0.003$ $R(D^*) = 0.258 \pm 0.005$
- Other observables $P_{\tau}(D^{(*)})$ and P_{D^*}

Analysis Strategy for B Factories

- Tag accompanying B mesons
 - Hadronic tag
 - Semileptonic tag
 - Inclusive* (early Belle)
- Signal identification

- $-D^{*0} \rightarrow D^{0}\gamma, \ D^{0}\pi^{0}; D^{*-} \rightarrow \overline{D}^{0}\pi^{-}, D^{-}\pi^{0}$ $5 \sim 8 \ D^{0}$ decay modes and $6 \sim 7 \ D^{-}$ modes
- Identify $\tau^+ \rightarrow l^+ \nu \overline{\nu}, \pi^+ \overline{\nu}_{\tau}, \rho^+ \overline{\nu}_{\tau}$
- Suppress backgrounds with various variables

Signal Extraction, B Factories

Fit on E_{ECL} and O_{NB}

 O_{NB} = Neural-network variable

Analysis Strategy, LHCb

• Identify $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ $-D^{*-} \rightarrow \overline{D}^0 \pi^- \rightarrow (K^+ \pi^-) \pi^-$ • $\tau^+ \to \mu^+ \nu_\mu \ \bar{\nu}_\tau$ $- (p_B)_z = \frac{m_B}{m_{\rm rec}} (p_{\rm rec})_z$ - Fit on m_{miss}^2 , E_{μ}^* and q^2 Simultaneously obtain yields of $D^{*-}\tau^+\nu_{\tau}$ and $D^{*-}\mu^+\nu_{\nu}$ • $\tau^+ \rightarrow \bar{\nu}_{\tau} \pi^+ \pi^- \pi^+ (\pi^0)$ $-B^0 \rightarrow D^{*-}3\pi$ as norm. sample - Require $\Delta Z > 4\sigma_{\Lambda Z}$ - Compute p_B use kinematics - Fit on t_{τ} , q^2 and a BDT output

Results of R(D) and $R(D^*)$

EXP	Tag	au decays	R(D)	$R(D^*)$
BaBar 12	Hadronic	$\ell \nu \overline{ u}, \pi u$	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle 15	Hadronic	$\ell \nu \overline{ u}$	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$
Belle 16	Semileptonic	$\ell \nu \overline{\nu}$	_	$0.302 \pm 0.030 \pm 0.011$
Belle 18	Hadronic	πν, ρν	_	$0.270 \pm 0.035 \pm 0.027$
LHCb 15	-	$\ell \nu \overline{\nu}$	_	$0.336 \pm 0.027 \pm 0.030$
LHcb 18	_	$3\pi\nu$	_	$0.286 \pm 0.019 \pm 0.033$

Averages from HFLAV

R(D) = 0.407 ± 0.039 ± 0.024
R(D*) = 0.306 ± 0.013 ± 0.007

Standard Model

R(D) = 0.299 ± 0.003
R(D*) = 0.258 ± 0.005

$\mathcal{T}_{\text{BELLE}}$ τ Polarization in $B \to D^* \tau \, \bar{\nu}_{\tau}$

Perform fits in forward and backward regions $\Rightarrow P_{\tau}(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16}$

2018/9/13

Summary of R(D) and $R(D^*)$ The average is 3.8 σ deviation from the SM

$\mathcal{B} \to D^{(*)}\pi \,\ell\nu$, Hadronic Tagged

- Important background for $B \rightarrow D^* \ell \nu$ $D^{**} \rightarrow D^* \pi$
- Fit on missing mass squared.

$$\begin{aligned} \mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu) \\ &= [4.55 \pm 0.27 \text{ (stat.)} \pm 0.39 \text{ (syst.)}] \times 10^{-3}, \\ \mathcal{B}(B^0 \to \bar{D}^0 \pi^- \ell^+ \nu) \\ &= [4.05 \pm 0.36 \text{ (stat.)} \pm 0.41 \text{ (syst.)}] \times 10^{-3}, \\ \mathcal{B}(B^+ \to D^{*-} \pi^+ \ell^+ \nu) \\ &= [6.03 \pm 0.43 \text{ (stat.)} \pm 0.38 \text{ (syst.)}] \times 10^{-3}, \\ \mathcal{B}(B^0 \to \bar{D}^{*0} \pi^- \ell^+ \nu) \\ &= [6.46 \pm 0.53 \text{ (stat.)} \pm 0.52 \text{ (syst.)}] \times 10^{-3}. \end{aligned}$$

arXiv: 1803.06444, submitted to PRD

2018/9/13

LFU on B_c : $J/\psi\tau\nu$ vs $J/\psi\mu\nu$

- Similar strategy Fit on m_{miss}^2 , τ_{B_c} and q^2 $R(J/\psi_r) = \frac{\mathscr{B}(B \rightarrow J/\psi \tau v)}{\mathscr{B}(B \rightarrow J/\psi \mu v)}$ • LHCb 3 fb⁻¹ (Run1) $-\tau^+ \rightarrow \ell^+ v \bar{v}$ $R(J/\psi_r) = 0.71 \pm 0.17 \pm 0.18$ PRL 120, 121801 (2018)
 - SM prediction: 0.25~0.28
 Compatible within 2σ

Rare Semileptonic Decays

- B decays in b → s/d l⁺l⁻ transition provides good probe for new physics in the penguin loop.
 - Small SM branching fraction (3)
 - More precise theoretical predictions
 - Many observables: **B**, A_{cp} , A_{FB} , P'_5 , $A_{iso-spin}$, *RK*, *RK** ... Decay amplitudes depend on $q^2 = (p_{\ell^+} + p_{\ell^-})^2$
 - Exclusive modes
 - Belle, BaBar, LHCb, CMS, ATLAS
 - Inclusive modes
 - Belle and BaBar

Decay Branching Fractions

+CMS (7, 8 TeV)

LHCb

BaBar

Belle

CDF

 $d\Gamma/dq^2$

Prog. Part. Nucl. Phys 92, 50

Photon pole

enhancement (from C_7)

CKM suppressed light-quark resonances

Sensitive to C_7 – C_9

interference

 $\psi(2S)$.

Broad charmonium

resonances (above the

open charm threshold)

Sensitivity to C_9 and C_{10}

phasespace

suppression

BFs consistently low.Consistent Exp. results

 dB/dq^2 $(10^{-8} imes GeV^{-2})$

10

8

6

2

Semileptonic and Leptonic B decays

Contributions from Charm

• Phase difference between short- $(b \rightarrow s\ell \ell)$ and long-distance

Semileptonic and Leptonic B decays

 $(b \rightarrow scc)$ contribution.

$$\begin{split} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = & \frac{G_F^2 \alpha^2 |V_{tb} V_{ts}^*|^2}{128\pi^5} |\mathbf{k}| \beta \left\{ \frac{2}{3} |\mathbf{k}|^2 \beta^2 \left| \mathcal{C}_{10} f_+(q^2) \right|^2 + \frac{4m_\mu^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} \left| \mathcal{C}_{10} f_0(q^2) \right|^2 \right. \\ & \left. + |\mathbf{k}|^2 \left[1 - \frac{1}{3} \beta^2 \right] \left| \mathcal{C}_9 f_+(q^2) + 2\mathcal{C}_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\}, \end{split}$$

EPJ C77, 161 (2017)

$$\begin{aligned}
f_{j}^{eff} &= C_{9} + \sum_{j} \eta_{j} e^{i\delta_{j}} A_{j}^{res}(q^{2}) \\
j &= 9 \text{ (mesons)} \\
\rho, \omega, \phi, J/\psi, \psi(2S) \dots
\end{aligned}$$

• Fix $|C_{10}| = |C_{10}^{SM}|$ $|C_9| < |C_9^{SM}|$

2018/9/13

Angular Analysis on $B \to K^* \ell^+ \ell^-$

- $K^* \to K^+\pi^-, K^+\pi^0, K_S^0\pi^+$ and $\ell = e, \mu$ for B factories; $K^+\pi^-\mu^+\mu^-$ for collider
- Background suppression
- Veto candidates in J/ψ and ψ' regions
- Perform angular fits in several q^2 bins

$$K^+ K^* P^-$$

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

$$= \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell \right. \\ \left. - F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi \right. \\ \left. + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \right. \\ \left. + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \right],$$

 $P'_i \Rightarrow$ Largely free from form-factor uncertainties. JHEP 05, 137 (2013)

P_5' Measurements

LHCb, JHEP02 (2016) 104
 Belle, PRL 118 (2017) 111801
 ATLAS-CONF-2017-023
 CMS, PLB 81 (2018) 517

LHCb, JHEP02, 104 (2016)

- Tension in $q^2 = 4 \sim 8 \text{ Gev}^2$ range
- Need to have precise measurements
- CMS has compatible accuracy.
- Global fit to $K^{(*)}\ell^+\ell^-$ results assuming new physics scenario.

Separate Lepton Flavor

- $Q_i = P_i^{\mu} P_i^e$
- Deviations from zero are sensitive to new physics.
- First presentation of Q_4 and Q_5

Angular analysis on $K^+\mu^+\mu^-$

• CMS recent analysis using run 1 data.

$$\frac{1}{\Gamma_{\ell}}\frac{d\Gamma_{\ell}}{d\cos\theta_{\ell}} = \frac{3}{4}\left(1 - F_H\right)\left(1 - \cos^2\theta\right) + \frac{1}{2}F_H + A_{FB}\cos\theta_{\ell}$$

 A_{FB} : Forward-backward asymmetry of the di-muon system. F_{H} : Contribution of pseudo scalar, scalar and tensor amplitudes to decay width

Hep Angular analysis on $\Lambda \mu^+ \mu^-$

- LHCb angular analysis on $\Lambda_b \to \Lambda \mu^+ \mu^-$. $\Rightarrow 5 \text{ fb}^{-1}$ $\frac{d^5\Gamma}{d\vec{\Omega}} = \frac{5}{32\pi^2} \sum_{i}^{34} K_i f_i(\vec{\Omega})$
- 5 angles and 1 normal direction observables *K_i*

Evidence of $B_S^0 \to \overline{K}^{*0} \mu^+ \mu^-$

- $B_S^0 \to \overline{K}^{*0} \mu^+ \mu^-$ proceeds through $b \to d\ell^+ \ell^$ transition, similar to $B_d^0 \to \rho^0 \mu^+ \mu^-$. \Rightarrow Low decay rate.
- 38 ± 12 events with 3.4σ significance

 $(B_S^0 \to \overline{K}^{*0} \mu^+ \mu^-) = (2.9 \pm 1.0 \pm 0.2 \pm 0.3) \times 10^{-8}$

Test Lepton Universality

• Weak couplings are the same for leptons in SM.

$$R_{K^{(*)}} = \frac{\mathcal{B}_{(B \to K^* \mu^+ \mu^-)}}{\mathcal{B}_{(B \to K^* e^+ e^-)}} \quad (\text{in } q^2 \text{ bins})$$

Identifying electrons are challenging in LHCb.

LHCb Run1 Results on $R_{K^{(*)}}$

Double ratio: $\frac{\mathscr{B}_{(B\to (K^{(*)}\mu^+\mu^-))}}{\mathscr{B}_{(B\to (K^{(*)}e^+e^-))}} / \frac{\mathscr{B}_{(B\to (J/\psi\,\mu^+\mu^-))}}{\mathscr{B}_{(B\to (J/\psi\,e^+e^-))}}$

Search for $B \to h \nu \bar{\nu}$

•
$$h = K^{*+}, K^{*0}, K^+, K^0_S, \pi^+, \pi^0, \pi^+, \rho^0, \rho^+$$

- Clean SM expectation on B.F. $\mathcal{B}(B^+ \to K^{*+}\nu\bar{\nu}) = 9.2 \times 10^{-6}$ $\mathcal{B}(B^0 \to \pi^0\nu\bar{\nu}) = 1.2 \times 10^{-7}$
- Need a *B* tag to perform the analy Signals are identified in E_{ECL}
- References:

Exp.	Tag	Ref.erence		
BaBar	Hadronic	PRD 87, 112005		
BaBar	Semilep.	PRD 82, 112002		
Belle	Hadronic	PRD 87, 111103		
Belle	Semilep.	PRD 92, 091101		

Search for $B^+ \to K^+ \tau^+ \tau^-$ and $B^0 \to K^{*0} \mu^\pm e^\mp$

- Violation of LFU \Rightarrow LFV
- Veto $K^{*0} J/\psi$ events

- Possible new physics particles couple to $\tau^+\tau^-$
- Hadronic tags with $\tau^+ \rightarrow \ell^+ \nu \nu$

R

Leptonic B Decays

- Clean processes with accurate theoretical branching fractions.
- Diagram involved in *W* is helicity suppressed.
- Small SM BFs. enable good probe for new physics.
 New physics in tree for *B*⁺ and in loop for *B*⁰

 $^+ \rightarrow \tau^+ \nu_{\tau}$

Exp.	Tag	B.F.× 10 ⁴	Reference		
Belle	Hadronic	$0.72^{+0.27}_{-0.25} \pm 0.11$	PRL 110, 131801 (2013)		
Belle	Semilept.	$1.25 \pm 0.28 \pm 0.27$	PRD 92, 051102 (2015)		
BaBar	Hadronic	$1.83^{+0.53}_{-0.49}\pm0.41$	PRD 88, 031102 (2013)		
BaBar	Semilept.	$1.7 \pm 0.8 \pm 0.2$	PRD 81, 051101 (2010)		
$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau})_{\rm avg} = (1.09 \pm 0.24) \times 10^{-4} \text{ PDG}$					
$\mathcal{B}(B^+ \to \tau^+ u_{ au})_{ m SM} = (0.845 \pm 0.70) imes 10^{-4}$ arXiv: 1712.04123					

Test CKM

$B^+ \to \mu^+ \nu_\mu$

• Belle New analysis - Full data sample 772M $B\overline{B}$ - Loose kinematic selections - Combine 14 variables in to O_{nn} - Fit to extract yield ratio of signals and $B \rightarrow \pi \ell \nu$ \Rightarrow Yield = 195 \pm 67, $\mathcal{B} = (6.46 \pm 2.22 \pm 1.60) \times 10^{-7} @ 2.4\sigma$ $\Rightarrow \mathcal{B} (B^+ \rightarrow \tau^+ \nu_{\tau}) = [2.9, 10.7] \times 10^{-7} @ 90\%$ CL. interval. $\pi \ell \nu$ bkg $\mu \nu$ signal

Semileptonic and Leptonic B decays

 $B_{s,d} \rightarrow \mu^+ \mu^-$

CMS + LHCb Nature 522, 68-72 6.2 σ (7.4 σ expected) for $B_s \rightarrow \mu^+\mu^-$

 $B_s \rightarrow \mu^+ \mu^- \left((3.0^{+1.0}_{-0.9}) \times 10^{-9} \right)$

 $B_d \to \mu^+ \mu^- | < 1.1 \times 10^{-9} @95\%$ CL

ATLAS: $(0.9^{+1.1}_{-0.8}) \times 10^{-9}$ for B_s < 4.2×10^{-10} for B_d

SM: Robeth et al., PRL 112, 101801 (2014) $\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ $\mathcal{B}(B_d \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

- Some new physics models may boost the branching fractions of $B \rightarrow \mu^+ \mu^-$
- Stringent test MFV hypothesis
- When can we have Run II results?

A Few Remarks

- $B^0_{(S)} \to \tau^+ \tau^-$, $B^0_{(S)} \to \text{invisible } (\nu \bar{\nu})$
 - Need a breakthrough in analysis technique to reach SM values for $\tau^+\tau^-$. $\mathcal{B}(B_s \to \tau^+ \tau^-) = (2.2 \pm 0.2) \times 10^{-7}$ - Looking for surprises. $\mathcal{B}(B_d \to \tau^+ \tau^-) = (2.2 \pm 0.2) \times 10^{-7}$
- $B \to \gamma \ell^+ \ell^-$, $\gamma \ell^+ \nu_{\ell}$ and $\gamma \nu \bar{\nu}$
 - Experimental results give limits at $10^{-5} \sim 10^{-7}$. Theoretical uncertainties may be large.

EXP.	Mode	Data	BF.	Reference
BaBar	$\tau^+\tau^-$	232M <i>B</i> \overline{B}	< 4.1x10 ⁻³	PRL 96 241802
LHCb	$B_d^0 \to \tau^+ \tau^-$	3 fb ⁻¹	< 2.1x10 ⁻³	PRL 118 251802
LHCb	$B_s^0 \to \tau^+ \tau^-$	3 fb ⁻¹	< 6.8x10 ⁻³	PRL 118 251802
BaBar	invisible	471M $B\overline{B}$	< 2.4x10 ⁻⁵	PRD 86 051105
Belle	invisible	657M $B\overline{B}$	< 13x10 ⁻⁵	PRD 86 032002

Search for $B_{(S)}^0 \to e^{\pm}e^{\mp}$

- Data sample: 3 fb⁻¹
- Control samples:
 - $-B^+ \rightarrow J/\psi K^+$
 - $-B^+ \rightarrow K^+ \pi^-$ (peaking background)
- Improvement since last measurement
 - Improved electron ID

- Fit perform in different Bram. cate.•
- Better BDT calibration

(1) Light (left) and (2) heavy (right) dominant

 Fit to *eμ* mass and no signals are seen.

$$\begin{split} \boldsymbol{\mathcal{B}}(B^0 \to e^{\pm} \mu^{\mp}) &< 1.3(1.0) \times 10^{-9} \\ \boldsymbol{\mathcal{B}}_1(B^0_s \to e^{\pm} \mu^{\mp}) &< 6.3(5.4) \times 10^{-9} \\ \boldsymbol{\mathcal{B}}_2(B^0_s \to e^{\pm} \mu^{\mp}) &< 7.2(6.0) \times 10^{-9} \\ & \text{at 90 (95)\% C.L.} \end{split}$$

Global Fits to Current Observables

- Extract Wilson coefficients and compare with their SM values
- Observables could be more than 100.

Some of the global fits show new physics contribution with σ.
Most of the fits point out that C₉^{NP} is the reason.

Hadronic B Decays

- Hadronic B decays provide rich samples for physics. - 3 CKM angles, ϕ_s , CP violations, spectroscopy
 - testing KM mechanism, probing new physics ...
- Large hadronic uncertainties in the theoretical decay rates.
 Ratio of branching fractions, A_{CP}, A_{CP}, polarization Sometimes even A_{CP} has large theoretical uncertainty.
- Hadronic decays and CP violations \Rightarrow See Barsuk's talk
- Recent results:
 - 2-body charmless decays
 - 3-body charmless decays

Charmless Two-body Decays

- Update on $B^0 \rightarrow \pi^0 \pi^0$
 - Apply *B* tagging
 - Fit on M_{bc} , ΔE and T_c
 - T_c for continuum suppression

• Update on $B^0 \rightarrow \eta \eta$ $\eta \rightarrow \gamma \gamma, \eta \rightarrow \pi^+ \pi^- \pi^0$

$A_{CP} = +0.14 \pm 0.36 \pm 0.10$ $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.31 \pm 0.19 \pm 0.19) \times 10^{-6}$

 $\mathscr{B}(B^0 \to \eta \eta) = (7.6^{+2.7+1.4}_{-2.3-1.6}) \times 10^{-7} @ 3.7\sigma$ First evidence, arXiv:1609.03267

CP Violation for Two-body

 $= -0.11 \pm 0.04 \pm 0.03$

• Direct CPV for $B^0_{(s)} \to K^+ \pi^ A_{cp}^{B^0} = -0.084 \pm 0.004 \pm 0.003$ $A_{cp}^{B_s^0} = +0.213 \pm 0.015 \pm 0.007$ \Rightarrow Most precise

• Direct CPV for
$$\Lambda_b^0 \rightarrow PK(\pi)$$
 preliminary
 $A_{cp}^{PK} = -0.020 \pm 0.013 \pm 0.019$
 $A_{cp}^{P\pi} = -0.035 \pm 0.017 \pm 0.020 \Rightarrow$ Most precise

• CPV for
$$B_d^0 \to \pi^+ \pi^-, B_s^0 \to K^+ K^-$$

 $C_{\pi^+\pi^-} = -0.34 \pm 0.06 \pm 0.01$
 $S_{\pi^+\pi^-} = -0.63 \pm 0.05 \pm 0.01$

 $C_{K^+K^-} = +0.20 \pm 0.06 \pm 0.02$ $S_{K^+K^-} = +0.18 \pm 0.06 \pm 0.02$

 m_{nK} - [GeV/c²]

Semileptonic and Lepontic B decays

Summary

 Many profound results from B decays have been reported. No striking new physics evidence is seen but several measurements show possible anomalies or tensions,

 $R(D^{(*)}), R(J/\psi), S\ell^+\ell^-$ branching fractions, $R_{K^{(*)}}, P_5'$

- Converging $|V_{cb}|$ inclusive and exclusive is a triumph. Need more effort and ideas for $|V_{ub}|$. Close communication with theorists.
- Precise measurements and excess of rare decays are achieved with more data. However sometimes new ideas matter.
 ⇒ Detecting B decays with neutrinos in the final states in LHCb.
- Looking for the era of Belle II and LHC Run 3.