Searches for Supersymmetry

XXXVIII International Symposium on Physics in Collision Bogota, Colombia, 11-15 September 2018

Andreas Petridis

Andreas.Petridis@cern.ch On behalf of the ATLAS and CMS collaborations

University of Adelaide

September 14, 2018

Synopsis

- 1 Supersymmetry (SUSY) at the LHC
- 2 Searches for squarks and gluinos
- 3 Searches for third generation squarks
- **4** Searches for electroweak SUSY
- Searches for RPV SUSY and long lived particles (LLP)

6 Summary

Why Supersymmetry

The most studied extension of the SM among any BSM theory. Advantages:

 Could solve the hierarchy problem through the one loop stop correction;

• Could unify the fundamental interactions of nature;

• Could provide a dark matter candidate, if R-Parity is conserved;

Figure 3 – Force unification in the Standard Model compared to supersymmetry http://www.newscientist.com/data/images/ns/cms/dn20248/dn20248-2_534.jpg

Naturalness guides most of the SUSY searches

• Naturalness requirement by the tree-level relation in MSSM:

$$rac{-m_Z^2}{2} = |\mu|^2 + m_{H_u}^2$$

The masses of the superpartners with the closest ties to the Higgs must not be too far above the weak scale;

- Higgsinos should not be too heavy because their mass is controlled by μ;
- The stop and gluino masses, correcting $m_{H_u}^2$ at one and two-loop order, also cannot be too heavy.
- The masses of the rest of the superpartners, including the squarks of the first two generations, are not important for naturalness and can be out of the LHC reach;

natural SUSY

SUSY models considered in the searches

Simplified models are mostly used for event generation, optimization studies and for interpretation.

- Practical and minimal;
- Contain few parameters because they contain only a subset of new particles;
- Masses and decay modes of the particles under study are the only free parameters;
- The rest of the SUSY particles are set to masses beyond the LHC reach.

SUSY at the LHC

- Dedicated SUSY searches for all production mechanisms
 - strong production: squarks (1st and 2nd generation) and gluinos;
 Large cross sections, jetty environment
 - 3rd generation: stops and sbottoms; two orders of magnitude smaller cross sections, presence of b-tagged jets
 - Electroweak: charginos, neutralinos and sleptons

significantly smaller cross sections, clean signatures with leptons

- Decay modes
 - Extensive coverage of signatures;
 - Simple to complex final states including prompt and long-lived particle decays;
 - *R*-Parity conserved and violated;
- Simplified models for model-dependent exclusion limits.
- Model-independent upper limits, HEP data
- Interpretation on more realistic models (pMSSM) is also provided at the end of a Run.

6 / 33

CMS and ATLAS experiments

• General purpose detectors;

- Rich program on SUSY searches from both ATLAS and CMS;
- ATLAS public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
- CMS public results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

SUSY search strategies at the LHC

- Identify the signal hypothesis and the signature (final state) to be studied;
 - The signal hypothesis can be any of the SUSY production mechanisms;
 - A given signal hypothesis is studied in different final states (lepton and/or jet multiplicities and missing transverse momentum) depending on the decay modes of the unstable particles;
- Design triggers to most efficiently collect data with the target characteristics;
- Use the objects defining the final state to construct kinematic variables (discriminants);
- Design signal regions (SR) sensitive to the signal hypothesis;
 - Simple cut and count analysis (regions are inclusive);
 - Exclusive (binned) SR based on the shape of a given variable (m_{T2}) ;
 - Recursive Jigsaw Reconstruction (reference frames);
 - Machine learning with multivariate analysis approach;
- Careful examination and evaluation of the systematic uncertainties;
- Estimation of the SM backgrounds.

Recursive Jigsaw reconstruction

A method for decomposing measured properties event-by-event to provide a basis of kinematic variables. Achieved by approximating the rest frames of intermediate particle states in each event.

- Assign reconstructed objects to the two hemispheres of the decay trees (mass minimization);
- A natural basis of kinematic observables calculated by recursively evaluating the momentum and energy of different objects in these reference frames.

Phys. Rev. D 96 (2017) 11200 Phys. Rev. D 95, 035031 (2017)

Background estimation strategies

Caveat: This is the norm but there are quite a few exceptions

Reducible background

Receives contributions from non-prompt leptons. Estimation based on data-driven techniques (Matrix Method, Fake Factor);

Irreducible backgrounds

Normalize Monte Carlo predictions $(t\bar{t}, VV, ..)$ to data in dedicated Control Regions (CR);

- Extracted Normalization Factor (NF) is validated in Validation Regions(VR);
- Final background estimation comes from a simultaneous likelihood fit of Signal Regions (SR) and CR;

Backgrounds producing "fake" $\textit{E}_{\rm T}^{\rm miss}$ due to jet mismeasurement

Contributions from this category are suppressed by requiring the jets and $E_{\rm T}^{\rm miss}$ to not point in the same direction ($\Delta \phi$ (jets, $E_{\rm T}^{\rm miss}$))

Small backgrounds

Contributions from these sources are taken directly from Monte Carlo predictions.

Searches for squarks and gluinos

Summary plots for squarks and gluinos

- Gluino masses up to 2 TeV are excluded at 95% CL; With 300 fb⁻¹ at \sqrt{s} =14 TeV limits are expected to reach 2.4 TeV
- Squark masses up to around 1.6 TeV are excluded at 95% CL; With 300 fb⁻¹ at \sqrt{s} =14 TeV limits are expected to reach 1.8 TeV

NO significant improvements are expected with the full Run II dataset

Searches for gluinos

Search for gluino pair production in multi-*b* jet and 0/1-lepton final state with $\bar{L} = 80 \text{ fb}^{-1}$

Variable gluino branching ratio: $\tilde{g} \to t \bar{b} \tilde{\chi}_1^-$, $\tilde{\chi}_1^- \to f f' \tilde{\chi}_1^0$, $\tilde{g} \to t \bar{t} \tilde{\chi}_1^0$. $\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$

Mass difference between $\tilde{\chi}_1^-$ and $\tilde{\chi}_1^0$ is fixed to 2 GeV Analysis strategies: inclusive cut and count and multi-bin; Main bkg: $t\bar{t}$ in association with heavy and light flavour jets

> 0.75 08 0.85

0.9 b-jet efficiency 200

1000 1200 1400 1600

1.8

1.4

0.6 55

06 0.65 07

2400

m(ã) [GeV]

1800

Search for GMSB in $1\ell + 1\gamma + E_{\rm T}^{\rm miss}$

CMS-PAS-SUS-17-012

Search for both strong and EWKino production

Dominant bkgs

- Jet misidentified as photon, or photon originating from nearby vertex;
- Jet misidentified as lepton, non-prompt leptons;

• Electroweak processes $W\gamma$ and $Z\gamma$, $E_{\rm T}^{\rm miss}$ shape taken from simulation and normalization is determined by a two-component signal plus bkg template fit

Searching for stop quarks

15 / 33

ATLAS stop summary plot

800 850 900 951 m(t̃,) [GeV]

750

- Dedicated stop searches for each region of the 2D $m_{\tilde{t}} m_{\tilde{\chi}_1^0}$ plane
- Stop branching ratios are 100%.
- Most difficult regions are in the transition regions $m_{\tilde{t}} m_{\tilde{\chi}_1^0} = m_t$ and $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} = m_W$
- Limits become weaker as the neutralino mass increases;
- Interpretations are also provided for well tempered neutralino;
- Weaker limits in Bino/Higgsino LSP models with compressed mass spectra.

550

650

CMS stop and sbottom summary plots

 Similar sensitivities and exclusion contours from CMS at high mass, while in the compressed regon CMS has better sensitivity mostly due to the lower p_T thresholds of leptons;

With 300 fb⁻¹ at $\sqrt{s} = 14$ TeV limits will be around 1.2 TeV

• Stops (sbottoms) with masses up to 1.1 (1.2) TeV are excluded at 95% CL; With 300 fb⁻¹ at \sqrt{s} =14 TeV limits are expected to be close 1.4 TeV

NO significant improvements are expected with the full Run 2 dataset

Stop in compressed scenarios

Search for stops with $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} < m_W$; Events are selected with an highly energetic ISR jet, large $E_{\rm T}^{\rm miss}$ and soft leptons ($p_T > 3.5$ GeV). Two analysis techniques: a sequential selection and a multivariate technique (BDT)

CMS-SUS-17-005

Events / 200 GeV

20

18

16

14

12

10

m_{b₁}[GeV] ≣∣≡ ∽९

19/33

Searches for sbottom

ATLAS Preliminary

√s = 13 TeV. 79.8 fb⁻¹

SRA

Searches performed with $L = 80 \text{ fb}^{-1}$

Signature with at least three b-tag jets.

Signal regions for both boosted and compressed topologies.

Main bkgs from $t\bar{t}$ and $Zb\bar{b}$ production. MC normalized to data in CRs.

Dominant unc.: Theoretical and modeling unc. of $t\bar{t}$ and $Zb\bar{b}$ (11%-22%)

Z+iets

tŤH

+ Data

Sinale Top

3000

m_{off} [GeV]

tīV

Diboson 🚧 SM Total

----- m(b, , 2, , 2) = (1100, 650, 60) GeV

W+iets

t three b-tag jets.

m₂ [GeV]

400

400 600 800 1000 1200 1400

< ロト < 同ト < ヨト < ヨト

ATLAS-CONF-2018-040

Searches for electroweak SUSY

Small cross-sections, low jet activity, clean signatures with leptons

20/33

The workhorse for EWK production - $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$

Searching for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ in compressed scenarios

In "natural" SUSY models, Higgsinos should be light

- Searches from both ATLAS and CMS 2-lepton soft: CMS:1801.01846, ATLAS:1712.08119
 Main background: fake and non-prompt leptons
- Disappearing track: ATLAS:1712.02118

Challenging signatures due to soft leptons ($p_T > 3.5$ GeV)

Search for long-lived $\tilde{\chi}_1^{\pm}$ through disappearing track signature

Soft lepton efficiencies

- The efficiency refers to the reconstruction + identification + isolation + vertexing requirements for generator-level leptons from W decay in a simulated sample of ttbar events;
- Soft muons (56% 65%), Soft electrons (24% 34%)
- Improving the efficiencies on soft leptons could have a significant impact in our searches for scenarios with compressed spectra.

Searching for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ through RJR

1806.02293

An extensive search for charginos and neutralinos decaying to on-shell W and Z. $[2\ell, 3\ell] \times [High, Int, Low, ISR] = 8$ SRs

Moderate excesses observed in the $\boldsymbol{\mathsf{Low}}$ and $\boldsymbol{\mathsf{ISR}}$ regions.

Low and ISR SRs contain mutually exclusive events

Statistical combination of the two- and three-lepton SRs

Excess not present in previous ATLAS search 1803.02762 BUT the two searches select different kind of events see back-up

Search for pair production of charginos

- $\tilde{\chi}_1^+ \tilde{\chi}_1^- \to WW \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to 2\ell + E_{\mathrm{T}}^{\mathrm{miss}}$
- Both ATLAS and CMS use m_{T2} as the main discriminant of the analysis

• Better sensitivity from ATLAS due to the statistically larger sample

Search for stau production

- A comprehensive search for processes involving staus;
- Two tau final states, with both leptonic and hadronic decays
- Light stau and small Δm can yield right DM relic density via stau-neutralino coannihilation.
- Limiting factors for direct stau production: small production cross-section. statistical uncertainties in the control samples, experimental unc. (JES/JER, uncluster energy contributing to $E_{\rm T}^{\rm miss}$)
- Strongest limits achieved for a left handed $\tilde{\tau}$ scenario of 90 GeV $(1.26 \times \sigma_{NLO+NLL})$.

CMS

£ 10⁵

10⁴

68% expected

350

m. [Ge

300

 $pp {\rightarrow} \widetilde{\tau} \widetilde{\tau}^{\star}, \ \widetilde{\tau} {\rightarrow} \ \tau \widetilde{\chi}_{\star}^{0}, \ m(\widetilde{\chi}_{\star}^{0}) = 1 \ GeV$

Observed

400

Search for Higgsinos in GMSB scenarios

CMS:1801.03957

- The 4b search drives the exclusion at large values of ${\cal B}({ ilde \chi}^0_1 o H{ ilde G});$
- on-Z dilepton and multilepton searches are competing at lower values of $\mathcal{B}(\tilde{\chi}^0_1 \to H\tilde{G})$
- ATLAS:1806.04030 (4b), 1804.03602 (4ℓ)

A. Petridis

Searches for RPV SUSY and long lived particles

- Many viable RPV scenarios; LSP decaysightarrowno large $E_{
 m T}^{
 m mis}$
- Challenging signatures due to the different decay topologies, triggering..
- Searches for non-prompt particles complement the prompt searches.
- Long-lived particles can also arise in RPC SUSY e.g. from decays via very virtual particles (split SUSY) or very compressed mass spectra.
- Reduced SM background outside the beamspot. Contributions arise from detector noise, cosmic rays, reconstruction failure...estimated from data-driven techniques

Seach for gluino *R*-hadron LLP

Measure ionisation energy loss (dE/dx) in the pixel detector to search for stable and metastable non-relativistic long-lived particles;

SRs: one sensitive to decaying R-hadrons and one for stable ones;

Background estimed from data and covers both the rate of high momentum tracks in events with large $E_{\rm T}^{\rm miss}$ and the probability of measuring a high ionisation energy for those tracks;

Results are interpreted assuming the pair production of R-hadrons as composite colourless states of a long-lived gluino and SM partons.

Second generation slepton production

Search for resonant production of second generation sleptons via RPV coupling.

Final state with two same-sign muons and at least two jets.

SRs binned in
$$M_{slepton}=m_{\mu\mu+jets}$$
 and $M_{ ilde{\chi}_1^0}=m_{\mu_2 j_1 j_2}$

ATLAS Preliminary $\sqrt{s} = 7.8.13$ TeV

ATLAS SUSY Searches* - 95% CL Lower Limits

 	0.	· •	
		124	
v 6		0	

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	-') M	ass limit		$\sqrt{s} \equiv 7, 8 \text{ Te}$	$\sqrt{s} \equiv 13 \text{ TeV}$	Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{t}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	 ğ [2x, 8x Degen.] ğ [1x, 8x Degen.] 	0.43	0.9	1.55	m(\tilde{t}_{1}^{0})<100 GeV m(\tilde{q})-m(\tilde{t}_{1}^{0})=5 GeV	1712.02332 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow g\tilde{g}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	36.1	ž ž		Forbidden	2.0	m(\tilde{t}_{1}^{0})<200 GeV m(\tilde{t}_{1}^{0})=900 GeV	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow g\tilde{q}(\ell \ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	- Yes	36.1 36.1	ê ê			1.85	m($\tilde{\chi}_1^0$)<800 GeV m(\tilde{g})-m($\tilde{\chi}_1^0$)=50 GeV	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow gqWZ\tilde{\chi}_{1}^{0}$	0 3 e,µ	7-11 jets 4 jets	Yes	36.1 36.1	ž ž		0.98	1.8	m($\tilde{\chi}_{1}^{0}$) <400 GeV m(\tilde{g})-m($\tilde{\chi}_{1}^{0}$)=200 GeV	1708.02794 1706.03731
	$\overline{g}\overline{g}, \overline{g} \rightarrow tt \overline{X}_{1}^{0}$	0-1 e,μ 3 e,μ	3 b 4 jets	Yes	36.1 36.1	ē ē			1.25	m(t ² ₁)<200 GeV m(t ²)-m(t ² ₁)=300 GeV	1711.01901 1706.03731
3 rd gen. squarks direct production	$\hat{b}_1\hat{b}_1, \hat{b}_1 \rightarrow b\hat{\chi}_1^0/t\hat{\chi}_1^*$		Multiple Multiple Multiple		36.1 36.1 36.1	δ ₁ Forbidder δ ₁ δ ₁	n Forbidden Forbidden	0.9 0.58-0.82 0.7	m) m(\tilde{X}_{1}^{0})=2	$m(\tilde{t}_{1}^{0})$ =300 GeV, BR $(b\tilde{t}_{1}^{0})$ =1 \tilde{t}_{1}^{0} =300 GeV, BR $(b\tilde{t}_{1}^{0})$ =BR (\tilde{t}_{1}^{0}) =0.5 t00 GeV, $m(\tilde{t}_{1}^{0})$ =300 GeV, BR (\tilde{t}_{1}^{0}) =1	1708.09266, 1711.03301 1708.09266 1706.03731
	$\tilde{b}_1 \tilde{b}_1, \tilde{t}_1 \tilde{t}_1, M_2 = 2 \times M_1$		Multiple Multiple		36.1 36.1	Îı Îı Forbidden		0.7		m(ξ_1^0)=60 GeV m(ξ_1^0)=200 GeV	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
	$\tilde{\iota}_1 \tilde{\iota}_1$, $\tilde{\iota}_1 \rightarrow Wh \tilde{\ell}_1^0$ or $\iota \tilde{\ell}_1^0$ $\ell_1 \ell_1$, $H LSP$	0-2 <i>e</i> ,µ 0	Nultiple Multiple	b Yes	36.1 36.1 36.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	n	1.0 0.4-0.9 0.6-0.8	m($\tilde{t}_1^0)=$ m($\tilde{t}_1^0)=$	$m[\tilde{x}_{1}^{0}]=1 \text{ GeV}$ 150 GeV, $m[\tilde{x}_{1}^{0}]=m[\tilde{x}_{1}^{0}]=5 \text{ GeV}$, $\tilde{r}_{1} = \tilde{r}_{L}$ 300 GeV, $m[\tilde{x}_{1}^{0}]=m[\tilde{x}_{1}^{0}]=5 \text{ GeV}$, $\tilde{r}_{1} = \tilde{r}_{L}$	1506.08816, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
	T ₁ T ₁ , Well-Tempered LSP		Multiple		36.1	Ĩ1		0.48-0.84	$m(\tilde{t}_1^0) =$	150 GeV, $m(\tilde{t}_1^*) \cdot m(\tilde{t}_1^0) = 5$ GeV, $\tilde{t}_1 = \tilde{t}_L$	1709.04183, 1711.11520
	$I_1I_1, I_1 \rightarrow c\chi_1 / cc, c \rightarrow c\chi_1$	0	mono-jet	Yes	36.1		0.46 0.43	0.65		m(t,)=0 GeV m(t, t)-m(t)=50 GeV m(t, t)-m(t)=5 GeV	1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e, µ	4 b	Yes	36.1	ī.,		0.32-0.88		$m(\tilde{t}_{1}^{0})=0$ GeV, $m(\tilde{t}_{1})-m(\tilde{t}_{1}^{0})=180$ GeV	1706.03986
EW direct	$\tilde{\chi}_1^* \tilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	Yes Yes	36.1 36.1	$\frac{\hat{\chi}_{1}^{+}/\hat{\chi}_{2}^{0}}{\hat{\chi}_{1}^{+}/\hat{\chi}_{2}^{0}} = 0.17$		0.6		m($\tilde{\xi}_1^+$)=0 m($\tilde{\xi}_1^+$)=10 GeV	1403.5294, 1806.02293 1712.08119
	$\tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0}$ via Wh	<i>ℓℓ/ℓγγ/ℓbb</i>		Yes	20.3	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.26$				m(ž ⁰ ₁)=0	1501.07110
	$\hat{\chi}_{1}^{*}\hat{\chi}_{1}^{v}/\hat{\chi}_{2}^{0}, \hat{\chi}_{1}^{*} \rightarrow Pv(\tau\bar{\nu}), \hat{\chi}_{2}^{0} \rightarrow P\tau(\nu\bar{\nu})$	2 τ		Yes	36.1	$\hat{x}_{1}^{+}/\hat{x}_{2}^{0}$ $\hat{x}_{1}^{+}/\hat{x}_{2}^{0}$ 0.22		0.76	$m(\tilde{t}_1^+) \cdot m(\tilde{t}_1^0)$	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}, \tilde{\tau})=0.5(m(\tilde{\chi}_1^+)+m(\tilde{\chi}_1^0))$ =100 GeV, $m(\tilde{\tau}, \tilde{\tau})=0.5(m(\tilde{\chi}_1^+)+m(\tilde{\chi}_1^0))$	1708.07875 1708.07875
	$\tilde{t}_{1,R}\tilde{t}_{1,R}, \tilde{t} \rightarrow \ell \tilde{\chi}_1^0$	2 e,μ 2 e,μ	0 ≥ 1	Yes Yes	36.1 36.1	ž 0.18	0.5			$m(\tilde{\ell}_1^0)=0$ $m(\tilde{\ell}_1)=5 \text{ GeV}$	1803.02762 1712.08119
	$\hat{H}\hat{H}, \hat{H} \rightarrow h\hat{G}/Z\hat{G}$	0 4 e,µ	$\geq 3b$ 0	Yes	36.1 36.1	R 0.13-0.23 H 0.1	3	0.29-0.88		$BR(\tilde{\ell}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\ell}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602
ed s	$\operatorname{Direct} \widehat{\chi}_1^+ \widehat{\chi}_1^- \operatorname{prod.}, \operatorname{long-lived} \widehat{\chi}_1^+$	Disapp. trk	1 jet	Yes	36.1	$\frac{\tilde{x}_{1}^{+}}{\tilde{x}_{1}^{+}}$ 0.15	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
10 E	Stable g R-hadron	SMP	-	-	3.2	8			1.6		1606.05129
Par la	Metastable § R-hadron, §→qqX1 GMSB X ⁰ →wC long-long X ⁰	2 y	- Nulliple	Yes	32.8	g (r(g) = 100 rs, 0.2 rs)	0.44		1.6 2.	m(x_1)=100 GeV	1409 5542
~	žž, X ⁰ ₁ →eev/eµv/µµv	displ. ee/eµ/µ	μ -	-	20.3	8			1.3	$6 < cr(\tilde{\chi}_1^0) < 1000 \text{ mm, } m(\tilde{\chi}_1^0)=1 \text{ TeV}$	1504.05162
	LFV $pp \rightarrow \hat{v}_{\tau} + X, \hat{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	еµ,ет,µт			3.2	Ϋ́,			1.9	$\lambda_{j_{11}} = 0.11, \lambda_{132/133/233} = 0.07$	1607.08079
	$\hat{\chi}_{1}^{*}\hat{\chi}_{1}^{*}/\hat{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell_{YY}$	4 e, µ	0	Yes	36.1	$\tilde{\chi}_{1}^{+}/\tilde{\chi}_{2}^{0} = [\lambda_{03} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33	m(21)=100 GeV	1804.03602
>	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{o}, \tilde{\chi}_{1}^{o} \rightarrow qqq$	0 4-	5 large-R ji Multiple	ets ·	36.1	ğ [m(k ⁿ)=200 GeV, 1100 GeV] g [k ⁿ ₁ =2e-4, 2e-5]		1.05	1.3 1.9	Large .4 ^{'12} m(x ⁰)=200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
5	$\tilde{\chi}\tilde{\chi}, \tilde{\chi} \rightarrow tbs / \tilde{\chi} \rightarrow tt\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	ğ [2 ⁿ ₃₂₃ =1, 1e-2]			1.8 2.1	m(x ⁰)=200 GeV, bino-like	ATLAS-CONF-2018-003
	II, $I \rightarrow t \hat{\chi}_1^0, \hat{\chi}_1^0 \rightarrow t b s$		Multiple		36.1	ğ [X'' ₃₂₃ =2e-4, 1e-2]	0.5	5 1.05		m($\tilde{\ell}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 l	ь -	36.7	$\hat{t}_1 = [qq, bx]$	0.42 0	0.61			1710.07171
	$I_1I_1, I_1 \rightarrow Dt$	2 e, µ	2 b		36.1	11		_	0.4-1.45	$BH(t_1 \rightarrow bx/b\mu) > 20\%$	1/10.05544
Only	a selection of the available mas	e limite on r	now state	e or	1	0-1				Maga apple (To)/1	
phen	Juny a selection of the available mass imms of new states or 10 10 10 Mass scale [TeV] observed on										

simplified models. c.f. refs. for the assumptions made.

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and z represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Conclusions

- A wide and rich program on SUSY searches from both ATLAS and CMS Collaborations;
- So far no hints for SUSY at the LHC;
- LHC performance is better than ever, SUSY maybe hiding in the corners of the parameter space still unexplored.. STAY TUNED

Back-up

34 / 33

Object performance

AAekey process for understanding and constraining the SM backgrounds in data. 35/33

Commonly used discriminants

• Missing transverse momentum: $E_{\mathrm{T}}^{\mathrm{miss}} = | - \sum_{i}^{n \text{ visible}} \vec{p}_{T}^{\mathrm{visible}} |$

• Hadronic transverse energy:
$$H_T = \sum_{i}^{n \text{ jets}} p_T^{jet}$$

• Leptonic transverse energy:
$$L_T = \sum_{i}^{n \ leptons} p_T^{leptons}$$

- Effective mass: $m_{eff} = E_{\mathrm{T}}^{\mathrm{miss}} + H_T + L_T$
- alphaT: $a_T = E_T^{j_2}/M_T$
- Transverse mass: $m_T=\sqrt{2p_T^\ell E_{
 m T}^{
 m miss}(1-cos\Delta\phi)}$

• Stransverse mass: $m_{T2} = min \left[max \left(m_T(\boldsymbol{p}_T^{\ell 1}, \boldsymbol{q}_T), m_T(\boldsymbol{p}_T^{\ell 2}, \boldsymbol{p}_T^{miss} - \boldsymbol{q}_T) \right) \right]$

• RJ scale variables:
$$H_{n,m}^{\mathrm{F}} = \sum_{i=1}^{n} |\vec{p}_{\mathrm{vis}, i}^{\mathrm{F}}| + \sum_{j=1}^{m} |\vec{p}_{\mathrm{inv}, j}^{\mathrm{F}}|$$

Systematic uncertainties

Careful examination and evaluation of all systematic sources affecting the result

- Experimental uncertainties:
 - · lepton reconstruction, identification and isolation efficiencies
 - lepton/jet energy scale and resolution
 - Flavor jet tagging efficiencies
 - $E_{\mathrm{T}}^{\mathrm{miss}}$ modeling
 - pile-up
- Theory uncertainties:
 - Vary the renormalization, factorization and merging scales used to generate the MC samples, as well as the PDFs. ISR uncertainties are also included for the signal MC
 - Generator comparisons (e.g. $t\bar{t}$ POWHEG vs aMC@NLO)
 - other additional uncertainties, e.g. single top interference
- · Uncertainties from the data-driven background estimation techniques

The impact on the number of expected events is determined by varying a given systematic between extremes $(\pm 1\sigma)$

The uncertainties in different kinematic regions are treated as correlated

Overlap of events between RJ and CA

N-1 plots for $2/3\ell$ SUSY EWK RJ analysis

Search for Higgsinos in GGM scenarios

- A search in multi b-jet final state.
- Two complementary analyses, targeting high- and low-mass signals
- Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV excluded at 95% CL. 1806.04030
- Four-lepton signal regions with up to two hadronically decaying taus Higgsino masses are excluded up to 295 GeV, at 95% CL 1804.03602

Neutralinos in higgs decays

ATLAS-CONF-2018-019

Search for Zh production with the h decaying either to two neutralinos or to a neutralino and a gravitino. Motivated by GMSB (\tilde{G} LSP) and nMSSM models (singlino, $\tilde{\chi}_1^0$ LSP) Single and di-photon $+E_{\rm T}^{\rm miss}$ final states are examined Discrimination of the hypotheticla signal from the SM bkgs by exploiting the balance of the Z and $\gamma E_{\rm T}^{\rm miss}$ systems Upper limits at 95% CL of less than 11% (18%) on the cross-section times branching fraction of each process are observed for massless gravitinos (massive neutralinos).

CMS limits on charginos and neutralinos

Strong production in two-lepton final state

Search targets the pair production of squarks and gluinos Production mechanisms:

 ${ ilde \chi}^0_2 o Z { ilde \chi}^0_1$ producing a dilepton pair consistent with the Z

mass

 $\tilde{\chi}^0_2 \to \ell \ell \tilde{\chi}^0_1$ yielding a kinematic endpoint in the dilepton invariant mass spectrum

Gluinos and squarks excluded up to masses of 1.85 TeV and 1.3 TeV at 95% CL.

Excess in Run 1 not confirmed

LLP/RPV reiterpretation

ATLAS-CONF-2018-003

Reinterpretation of searches for SUSY in models with:

Pair production of charginos

- $\tilde{\chi}_1^+ \tilde{\chi}_1^- \to WW \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to 2\ell + E_{\mathrm{T}}^{\mathrm{miss}}$
- Analysis performed with $L = 80 \text{ fb}^{-1}$
- Challenging due to small cross sections and background contributions from SM *WW*
- Inclusive and binned SRs (in m_{T2})
- CMS:1807.07799

≣।≡ ∽००, ि 45/33

Search for stops

CMS:1807.07799

Search for pair production of top squarks in two lepton final state.

Dedicated search in the intermediate region

 $m_W < \Delta m < m_t$

Multi-bin search binned in m_{T2} , E_{T}^{miss} , b-tag jet multiplicity and ISR jets.

 $\tilde{t} \rightarrow b \tilde{\chi}_1^{\pm} \rightarrow b W \tilde{\chi}_1^0$: a lower bound of $\Delta m \approx 2 m_W$ is set by the assumption on $m_{\tilde{\chi}_1^{\pm}}$ ATLAS:1708.03247

Search for processes involving staus

- Light stau and small Δm can yield right DM relic density via stau-neutralino coannihilation.
- A comprehensive search for all processes with staus.
- Both leptonic and hadronic decay modes of the τ leptons are considered.
- No excess above the expected standard model background has been observed.
- For a left-handed $\tilde{\tau}$ of 90 GeV decaying to a nearly massless LSP, the observed limit is 1.26 times the expected production cross section in the simplified model.
- ATLAS:1708.07875

Gluino Sensitivity at $\sqrt{s} = 14$ TeV

Squark Sensitivity at $\sqrt{s} = 14$ TeV

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 900 49/33 Top Squark Sensitivity at $\sqrt{s} = 14$ TeV

A. Petridis

50 / 33

A D A A B A A B A A B A B

Summary plots for EWK production

<ロ> (日) (日) (日) (日) (日)

A. Petridis

Summary plots for slepton production

52 / 33

Mass measurement for gluino R- hadron LLP

The parametric function describing the relationship between the most probable value of the energy loss $(MPV_{dE/dx})$ and $\beta\gamma$ is:

$$MPV_{dE/dx} = A/(\beta\gamma)^{C} + B$$

The A, B and C calibration constants were measured using low-momentum pions, kaons and protons.

The $MPV_{dE/dx}$ is extracted from a fit to the distribution of dE/dx values for each particle species.

Given a measured value of dE/dx and momentum, and assuming unit charge, the mass m is calculated from the equation above by numerically solving the equation

 $MPV_{dE/dx}(p/m) = dE/dx$ for the unknown *m*, where the $MPV_{dE/dx}$ is approximated by the truncated-mean measurement of dE/dx.

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Object reconstruction

