AOD usage for charm-hadron
analyses

F.Colamaria,A.Dainese,A.Festanti,A.Rossi,C.Terrevoli
CERN

Offline Week
8 Nov 2017

Outline

HF delta AOD production
— Standard AOD content
— NEW reduced dAOD

Number of “filtered” and selected candidates

Analysis-by-analysis specific issues in view of
Run3

Possible options for Run3 analyses

Delta AOD production

e AlIAOD.VertexingHF.root (associated with
AlIAOD.root) produced by
AliAnalysisTaskSEVertexingHF

* AlIAOD.VertexingHF.root contains a tree with

* Branch of secondary vertices

* Branches with charm hadron candidates: DO—2>Kpi, 3-
prong(D+, Ds, Lc), D*, Lc>VO0+h, (4-Prong, LikeSign2Prong,
LikeSign3Prong, JPsiToEle: only in for pp and pPb)

 Candidates = AliIAODRecoDecayHFNProng
(N=2,3,4) or AlIAODRecoCascadeHF >
AliAODRecoDecayHF, AIAODvO —>
AlIAODRecoDecay—2> AliVTrack—> AliV/Particle

Runl Pb-Pb dAOD content

= AWAIAOD. VertexingHF root
_] ProcessiDO;1
= %|aodTree6
MVerticesHF
A Cham3Prong
Aostar
AtHFUtilingo
—JUserinfo
#|aodTree:5
—JListOICuts; 1

ZAROOT Files
= AR AIAOD.VertexingHF .root

...... D ProcessIDO;1

= %#|aodTree;6

4% VerticesHF .fUniquelD

-3 VerticesHF .{Bits

Ml VerticesHF .fName

- MVerticesHF .{Title

-3¢ VerticesHF .fPosition[3]
4% VerticesHF .fChi2perNDF
-3 VerticesHF.fID

3% VerticesHF .fBCID

4% VerticesHF .{Type

-3 VerticesHF .fNprong
3% VerticesHF .fNContributors
- Ml VerticesHF .fCovMatrix

¢ VerticesHF .fParent

4% VerticesHF .fDaughters
-4 VerticesHF .fProngs

= VA VerticesHF

‘AROOT Files
= AR AIAOD.VertexingHF .root
_]ProcessIDO; 1
= #|aodTree;6
= AlVerticesHF

= V.4 DOtoKpi

-3 DOtoKpi.fUniquelD
¥ DOtoKpi.1Bits
¥ DOtoKpi.fSecondaryVix
- A DOtoK pi.fOwnSecondaryVix
- ¥x DOtoKpi.fCharge
- 3» DOtoKpi.fNProngs
- ¥» DOtoKpi.fNDCA
-3 DOtoKpi.fNPID
3% DOtoKpi.tPx
3% DOtoKpi.fPy
3% DOtoKpi.fPz
- DOtoKpi.fdo
¥ DOtoKpi.fDCA
- §» DOtoKpi.tPID
-3 DOtoKpi.fEventNumber
-3 DOtoKpi.fRunNumber
- S DOtoKpi.fOWNPrimaryVix
¥ DOtoKpi.fEventPrimaryVix
¥ DOtoKpi.fListOfCuts
% DOtoKpi.fdOerr
% DOtoKpi.fProngID
3% DOtoKpi.fSelectionMap

New strategy adopted for Run2 Pb-Pb

Reduced dAOD production (filtering level):
— Secondary vertices are not saved
— Only selected information saved for candidates (e.g. ProngID)

Analysis tasks use Prong ID to retrieve daughter tracks for each candidate

— “Filling” of the candidates = re-calculate secondary vertex and candidate
properties (fPx, fPy, fPz, fdO, fDCA, ...)

In a train: candidates “filled” only once by the first wagon which uses them
(small impact on trains’ CPU and memory usage)

Factor 8 smaller dAODs (tested in p-Pb and Pb-Pb)
— Looser filtering cuts can be applied expecially at low p;

LHC11h: dAOD/AOD™~O0.5 (standard filtering)
LHC150: dAOD/AOD~0.11-0.08 factor 4-6 smaller than LHC11h
(reduced filtering)

LHC16l,k: JAOD/AOD~0.5 (standard filtering)
Reduced dAOD can be used also for pp and p-Pb

Run2 Pb-Pb dAOD content

= AWAIAOD. VertexingHF root
_] ProcessiDO;1
= %|aodTree6
¥ MVerticosHF
A Charm3Prong
Aostar
AtHFUtilingo
—JUserinfo
#|aodTree:5
—JListOfCuts; 1

‘4ROOT Files
c ‘_‘gAliAOD VertexingHF.root
------ __]ProcessIDO; 1
E} % |aodTree;6
= b 4VerticesHF
| VerticesHF.fUniquelD

3% VerticesHF.fID
3% VerticesHF .fB

erticesHF.fParent
/3 VerticesHF.fDaughters
-3 VerticesHF .fProngs

‘AROOT Files
= AR AIAOD.VertexingHF .root
_]ProcessIDO;1
= #|aodTree;6
= AlVerticesHF

- ¥» DOtoKpi.fUniquelD

- §» DOtoKpi.fBits

D DOtelprtSueondutyi—————

I BStoptOwnSeeonaay ——

: ’DOtoKp' fNProngs

-} DotoKpitNDGA
I DOTOKPrNPTD

~ §» BotokprtPx

-} DOOKpPTtPY

i DotekprtRe

- §» Botokprtde
W DotoKprBEA

~ §» DOORPIPTD

-} DOteKphiEventhlumber——

i} BotokortRunNambe———————

I DBtoR o Swh P raTY H————

B T TS P —

|\ Bbtokpridoerr

% DOtoKpi.fProngID 6

3% DOtoKpi.fSelectionMap

30

Pt

25

20

15

10

Number of Candidates

HasSelBit
Entries 1.21195e+12

Mean x 1.727
Mean y 3.182

RMS x 1.229
RMS y 1.321

Picture may change in Run3:

— DO/evt will drop given the improved
spatial precision and tighter filtering
cuts

— Lc/evt and Ds/evt will increase
because we will push the analyses
down to low p,

x10°

90
80
70
60

o0

40

30

20

10

N evt sel

0-100% Pb-

Pb Run2

88M

pp@13
TeV (2016)

573M

N cand per event - Filtering level

DO (pt>1) 1170 0.01
D+ (pt>2) 2181 0.02
D* (pt>3) 340 0.03
Ds (pt>4) 435 0.04
Lc (pt>4) 3848 0.03

N cand per event — Analysis cuts
DO (pt>1) |0.41 0.0019
D+ (pt>2) 0.36 -

D* (pt>3) 0.25 -

Lc (pt>4) 0.95 -

Analysis-by-analysis specific issues

Hadron spectra with vertexing: similar analysis procedure as in Run 2
» Potential disk space and CPU time issues = need of analysing signals with very low
S/B that requires whole data sample - may need to add an intermediate step to keep
analysis time reasonable (see next slides)
= can consider an analysis-mode with pre-selected candidates as input, instead of
current loop on events and loop on candidates
» some event information needed: physics selection and pile-up flags?, primary
vertex (can be stored “per-candidate”), possible recalibration of PID
» need book-keeping for normalisation

D% (and D, A ?) at p; <1 GeV (no vertexing):

« enormous background and number of candidates, but also less variables used.

* Need to use THn or THnSparse histograms and avoid running analysis many times.

» Ds->Pi+Phi and Lc->Pi+K0s: in case of modular AOD(see next slides) - use Phi and
KOs candidates already reconstructed (in common with LF?)

Flow analyses:

* may need to run over whole sample many times to apply calibration/improvement to
quantities related to whole event (above ones + e.g. possibility to recalculate Q-vector
excluding daughters).

Analysis-by-analysis specific issues

Correlation analyses:

 in principle all tracks in the event are needed (including MFT tracklets)!

« Cannot avoid event loop, but can still try to perform analysis over objects with
reduced information (note: <<1 candidate per event selected in most cases - no
need info for all events) + need to perform analysis on mixed events

Current analysis procedure (angular D-h correlations)

« Task runs over the events and store in TTrees for each event with at least one trigger
particle

» Information of the trigger particles (D mesons)

pp 2010 p-Pb
> Information of the associated particles (charged 2016

tracks) #D 105k 115k
» Event taggers (period, orbit, BC) e A 114M
« Total size «per entry»: 68 bytes for D-meson, 44 :
bytes for tracks (TTree compression reduces final Output | 60MB 170MB
output file size) S1z€
» Pb-Pb extrapolation for 100M events in 0-10%: p-Pb: Running time = 200d

» =1.2 GB*fract.events w/ candidate D in PbPb/pPb (cuts & pT dependent)

« Output file analysed on the grid with parallelised jobs (nested loops on trigger
particles and tracks) - single event and mixed event analyses

Analysis-by-analysis specific issues

HF jets:
« similar to correlations but could be most delicate case since we may need to run the
jet finder many times and may need to access information for each jet constituent

Possible change of analysis flow

Improved spatial precision = less bkg - reduce disk and CPU “per-event”

On the other hand, extend low pt reach “down to 0, new analyses with low S/B (A,)
—>increase disk space and CPU time both at filtering and analysis level

+ number of events will be much larger (~ x100) and many analyses will need to

inspect full stat

— major concern: risk that analysis time explodes? Need proper estimates.
Addition of new intermediate step (next slide) could help.

time

Now
Reconstruction
+ filtering
§: ----- Analysis train
SNS~ Analysis train

*~ Analysis train

PO;S'bI_e |<“ Analysis train
é" Analysis train
. Analysis train

time

v

Run 3,4
Reconstruction : :
vy -==-= Analysis train
+ filtering o
(AOD, dAOD) Analysis train

Analysis train

Possible

refiltering (rare)

Analysis train

What is the expected turn-around
time to analyse 3e10 PbPb evts?

Possible change of analysis flow

Main goal: keep analysis time relatively short, since analysis will need to be run many times with
varied code, settings + allow for new analyses to be run.

« We could write on trees or “nano-AODs” including basic information needed by analysis.
These can be created regularly during data reconstruction, accessing sequentially bunches of
data and then analysed in chain.

Run 3.4 Trees with carldldates or
nano-AODs with selected
event info + candidates

time

Reconstruction
+ filtering
(AOD, dAOD) d<-------

|
0
1
1
1
1
1
1
1

- Analysis train
N Analysis train
\\:\ Analysis train
> Analysis train

12

Possible change of analysis flow

Main goal: keep analysis time relatively short, since analysis will need to be run many times with
varied code, settings + allow for new analyses to be run.

« We could write on trees or “nano-AODs” including basic information needed by analysis.
These can be created regularly during data reconstruction, accessing sequentially bunches of
data and then analysed in chain.

« If required by analyses, trees / nano-AODs can be re-produced with new settings.

Run 3.4 Trees with capdldates or
nano-AODs with selected
event info + candidates

time

Reconstruction
+ filtering SITmmm———

(AOD, dAOD) —l<¢-1=---- - Analysis train
’ - Analysis train

P “~._ " Analysis train

! S . .

—1 "~~~ " Analysis train
~~ Analysis train

13

Possible change of analysis flow

Main goal: keep analysis time relatively short, since analysis will need to be run many times with
varied code, settings + allow for new analyses to be run.

* We could write on trees or “nano-AODs” including basic information needed by analysis.
These can be created regularly during data reconstruction, accessing sequentially bunches of
data and then analysed in chain.

» If required by analyses, trees / nano-AODs can be re-produced with new settings.

* In case of refiltering trees will be reproduced.

« Trees could be stored on the grid and analysed as current AOD.

Run 3.4 Trees with capdldates or
nano-AODs with selected
) event info + candidates
-§ Reconstruction
o = -pmm--a |l
+ filtering R O -
(AOD, dAOD) = — <-1----- Wi Tm~~-__ Analysis train
’ —__<Is.__ Analysis train
e ‘\\:* Analysis train
_ = _‘-‘\\P ~ Analysis train
Possible “~ Analysis train
refiltering (rare) @oosssnss <--- Analysis train
__ <--- Analysis train

<-- Analysis train 14

Modular AODs (or nano-AODs)?

* Similar as current AOD+dAODs, but more flexibility and modularity?

Tree of AOD events with friend trees that are connected and read on-demand

Tracks

Electron tracks (loose selection)?
ITS and MFT tracklets

VOs and cascades

HF hadrons

AOD header (including FIT data)

Analysis accesses only the friend trees that it needs: reduce 1/0,
however may increase number of files ...

15

Modular AODs (or nano-AODs)?

* Similar as current AOD+dAODs, but more flexibility and modularity?

e Tree of AOD events with friend trees that are connected and read on-demand

Tracks

Electron tracks (loose selection)?
ITS and MFT tracklets

VOs and cascades

HF hadrons

HF hadron spectra or flow:

AOD header

16

Modular AODs (or nano-AODs)?

* Similar as current AOD+dAODs, but more flexibility and modularity?

e Tree of AOD events with friend trees that are connected and read on-demand

Tracks

Electron tracks (loose selection)?
ITS and MFT tracklets

VOs and cascades

HF hadrons

HF hadron correlations with tracks:

AOD header

17

Modular AODs (or nano-AODs)?

* Similar as current AOD+dAODs, but more flexibility and modularity?

e Tree of AOD events with friend trees that are connected and read on-demand

Tracks

Electron tracks (loose selection)?
ITS and MFT tracklets

VOs and cascades

HF hadrons

HF hadron correlations with (MFT) tracklets:

AOD header

18

Modular AODs (or nano-AODs)?

* Similar as current AOD+dAODs, but more flexibility and modularity?

e Tree of AOD events with friend trees that are connected and read on-demand

Tracks

Electron tracks (loose selection)?
ITS and MFT tracklets

VOs and cascades

HF hadrons

HF hadrons in jets:

AOD header

19

Backup

AOD input data used

fHeader: most of its data member used
fTracks

fVertices (primary vertex and VO vertices)
fVOs (for Lc and Ds—=2VO0+h analyses)
fTracklets (mult. dep. analyses)

fAODVZERO (mult. dep. analyses and EP
determination)

How candidates are built

* AliAnalysisVertexingHF::FindCandidate = 2-prong
example

— Loop on positive tracks

— Loop on negative tracks

* ReconstructSecondaryVertex: secondary vertex reconstructed for each
pair of tracks

* If a vertexis found
» Make2Prong: creates AlIAODRecoDecayHF2Prong object and save
* TClonesArray of secondary vertices
e TClonesArray of reco candidates

» References = create correspondence between RD, daughters,
secondary

Runl pp, p-Pb, Pb-Pb and Run2 pp and p-Pb strategy
- New strategy adopted for Run2 Pb-Pb to reduce dAOD size

Filtering Time

Events Software versions Job states Timing Output
(done jobs only)

Input Processe d % Filtered AIiDPG ROOT AliROOT AliPhysics Output directory % Total Done Active Wait Err. Oth. Running Saving Size
929,996,819 926,140,935 99.59% 628,750,033 LHC16k 99.62% 51065 50871 80 22 0 139d9:52 1y 230d 48.5TB
97,546,912 120,314,821 123.3% 92,105,962 LHC11h 96.56% 208915 201730 0 7185 0 122y 346d 7y 306d 191.3 TB
9,584,930 (1] 0% O LHC150 lowlIR_pass3_pidfix 99.86% 5883 5875 0 8 0 38d15:00 29d 11:08 6.199 TB
139,446,055 [\} 0% 0 LHC150_pass1_pidfix 99.09% 66471 65863 0 608 0 202d9:38 4y 112d 67.78 TB

* Filtering time:
— Pb-Pb 2011: 92M filtered events, CPU running time 122y, size 191TB (AOD +
dAOD(all))

— Pb-Pb 2015: 102M(?) filtered events, CPU running time 202d, size 68TB (AOD +
dAOD(all))

— pp 2016: 600M filtered events, CPU running time: 151d, size 48TB (AOD +
dAOD(all))
 Runl Pb-Pb vs. Run2 Pb-Pb: similar number of filtered events
— Running time and AOD+dAOD size smaller for Run2 w.r.t. Runl

* More central events in Run1l affecting the performance
* Maybe different GRID resources available in 2011 and 2015

Impact of “re-filling”

Standard dAORS.........

Site Running Saving Done
ALICE::CERN::CERN-TRITON 5
ALICE::CERN::CERN-ZENITH 1
ALICE::CNAF::LCG
ALICE::FZK::LCG
ALICE::GRIF_IRFU::LCG
ALICE::IHEP::LCG

12 jobs on 6 sites 1 11

= NN -

N Ew Number of jobs
Site Running Saving Done
ALICE::CERN::CERN-TRITON
ALICE::CERN::CERN-ZENITH
ALICE::CNAF::LCG
ALICE::GRIF_IPNO::LCG
ALICE::GRIF_IRFU::LCG
ALICE::IHEP::LCG

12 jobs on 6 sites 12

= N = = =0

Average: Rss 339 MB, VM 1.45 GB, Time 32

1.907 GB

Standard dAODs

976.6 MB

Memory usage

488.3MB

o8B
13:00 13:09 13118 13:27 1336 13:45 13:54 14:03 14:12 14:21 14:30 14:39 144
22 Oct 2015

RSS Virtual

Summaries per site

RSS Virtual
Error Min Avg Max Min Avg
1.132 GB 1.527 GB 1.967 GB

274 MB 328 MB 361.5 MB
401.9 MB 401.5 MB 401.5 MB
3441 MB 3441 MB 344.1 MB
350.5 MB 351.1 MB 351.6 MB

Summaries per site

81.21 MB 300.8 MB 413.7 MB
405 MB 409 MB

326.3 MB 329.3 MB 329.3 MB 2.14GB

226.9 MB 226.9 MB 226.9MB 1.002 GB 1.002 GB 1.002 GB

262.3 MB 302.1 MB 341.9 MB
341.8 MB 1.151 GB

13.7 MB 294 MB

Average: Rss 309 MB, VM 1.6 GB, Time 45

Memory profile

1669 GB
143168
NEW dAOD
2 976.6MB
7324 MB

4883 MB
2441 M8B

sage

Memory

0B
1253 1259 1305 1311 1317 1323 1329 1335 1341 1347 1353
22 Oct 2015

RSS - Virtual

2.156 GB 2.156 GB 2.156 GB 2:28
1918 GB 1.918 GB 1.918 GB
1.331 GB 1.363 GB 1.395 GB
318.6 MB 343.2 MB 367.8 MB S42.6 MB 1.035GB 1.149 GB

911.9 MB 18.35%
911.9 MB 56 G 32m 18s On 56s 18.94%

RSS Virtual
Error Min Avg Max Min Avg

409 MB 2.523 GB 2.523 GB 2.523 GB

on Pb-Pb analysis

Average time CPU
Max Running Saving Efficiency
33m 56s 1m 2s 12.83%
24.88%
13m Ss Om 48s 21.19%
21m 24s 1m 12s 20.72%
5m 38s Om 43s 21.05%

18.35

Average time CPU
Max Running Saving Efficiency

254 MB 1.683 GB 2.343 GB 1:13 Om 5Ss 21.58%
1:06 1m 20s 10.66%

2.14GB 2.14GB 16m23s 1m7s 17.65%

1m 53s Om 18s 20.65%

1003 MB 1.239 GB 1.497 GB 6m5s 1m 2s 13.52%
2 B W151 Gp Im 2Ss 20.56%

23 G m 56s 19.94%

, Re-computing secondary
vertices and candidates-
related quantities does
not increase the CPU
time and memory usage

24

HFCJ — OFFLINE CORRELATIONS

Angular correlation of D-mesons and associated tracks

While running the task over the events, store for each event, with at least a selected
trigger, information of the triggers (D-mesons) and associated particles (charged
tracks) in dedicated TTrees

From the output .root file, correlation distributions can be build by performing nested
loops on the triggers and tracks stored in the TTrees

» By saving event taggers (period, orbit, BC) it’s possible to perform single-event
and mixed-event analyses running the task only once

» Being the entries in the TTrees too many, the looping phase is performed on the
grid with parallelized jobs

Alternative approach to the standard one (used also for D-h, and for e-h analyses),
which uses AliEventPool/AliEventPoolManager framework

» The two approaches were proved to be fully equivalent

» Avoids the usage of THnSparse containing correlation entries (which induce
memory issues in merging phase), though the output size grows linearly with the
statistics analyzed

STRUCTURE OF TTree

Inside the D-meson TTree Inside the track TTree
AliHFCorrelationBranchD AliHFCorrelationBranchTr
> Eta (Float_t) > Eta (Float_t)
> Phi (Float_t) > Phi (Float_t)
> Pr (Float_t) > Pt (Float_t)
> M, (candidate) (Float_t) > Event centrality (Float_t)
> Event centrality (Float_t) > Event Ny oets (Float_t)
> Event Ny et (Float_t) » z Vertex position (Float_t)
> 2z Vertex position (Float_t) » Period,orbit,BC (I/l/Ush.)
» Period,orbit,BC (I/l/Ush.) » Track selection (Short_t)
» D-meson identifier (Short_t) > |ID of mother trigger (Short_t x 4)
» D-meson selection (Short _t)
» Daughter 1,2 p; (x,y,z) (Float_t x

6)

> Sel. mass hypothesis (UShort_t)

« Members are needed to: build correlation distribution, tag the event, define the event
pool for ME, associate daugther tracks to the parent trigger(s), tag soft pion tracks,
apply multiple trigger and track selection

TYPICAL OUTPUT SIZE

Total size «per entry»: 68 bytes for D-meson, 44 bytes for tracks
» Note that the track TTree is filled much more times and dominates the output
In reality, the TTree compression helps to reduce the final size of the output file
» |In addition, the size depends on the D-meson cut values and on the fraction of
events with a selected D-meson candidate
For pp 2010, on a run with with loose D-meson cuts, the output size was 60 MB (~0.2
byte per event on average, i.e. considering also events w/o D)
» The real size without compression should have been of about 210 MB (4M tracks
+ 105k D mesons)
For p-Pb 2016, cent-integrated, D°-h analysis, the output size is 170 MB, the running
time was about 200 days
» The real size without compression should have been of about 501 MB (11,4M
tracks + 115k D mesons)
A very rough extrapolation for Pb-Pb (never tried running over) gives an increase of
track TTree size (which shall still dominate) for 100M 0-10% PbPb events of:
» Nevtspp,/Nevts p, * Npartp,p,/Npart o, * fract.events w/ candidate D in PbPb/pPb
= 1.2 GB*fract.events w/ candidate D in PbPb/pPb (cuts & pT dependent)

