
DDS
LOBBY BASED DEPLOYMENT

Andrey Lebedev (GSI)
Anar Manafov (GSI)

2017-11-10
Alice Offline Week @ CERN

1

Highlights
•  Token based authentication
•  Lobby based deployment

2

Token based authentication
Assumptions & Prerequisites

• Meet minimum security requirements, such as:
•  prevent erroneous connection attempts from DDS agents of

expired sessions or agents of other users,

•  prevent connection attempts on DDS UI channels from DDS
commands and user apps which don’t use privileges of the current
DDS user.

3

Token based authentication
Current solution
• DDS commander generates a session ID (SID).

•  SID is represented by a GUID (globally unique identifier).

• A file with SID is packed as a part of DDS WN packages.
•  Agents spawned from a given package can connected back only

using that SID.

• SID is stored on the commander’s host in the “~/.DDS”
directory. This helps DDS commands and user apps to
connect to DDS commander.

• RMS plug-ins receive that SID in a command line when
get spawned by the commander.

4

Lobby based deployment
• DDS Agents of a given user on one host is a lobby.

•  Lobby Leader is an agent who has a direct network connection to
commander;

•  All other agent are lobby members communicating with the
commander via the leader.

• Several prototypes have been developed
•  Finally we came up with the current solid design

5

commander
server

agents tasks

Shared memory communication
• Shared memory channel

•  Exactly the same event-based API as DDS network channel;
•  Duplex and many-to-many communication;
•  Asynchronous read and write operations;
•  dds-protocol;
•  Efficient message forwarding.

•  Implementation
•  boost::message_queue: message transport via shared memory;
•  dds-protocol: message definition, encoding, and decoding;
•  boost::asio: the proactor design pattern and an efficient thread pool.

6

Communication channels
•  Network and shared memory channels;
•  Unified event-based API for application and protocol events;
•  Compile time check for errors where possible;

7

client->registerHandler<EChannelEvents::OnConnected>(
 [](const SSenderInfo& _sender) { !
 // User’s code!
});

BEGIN_MSG_MAP(CInfoChannel)
 MESSAGE_HANDLER(cmdREPLY_PID, on_cmdREPLY_PID) !
 MESSAGE_HANDLER(cmdREPLY_AGENTS_INFO, on_cmdREPLY_AGENTS_INFO)
END_MSG_MAP()

client->registerHandler<cmdUPDATE_TOPOLOGY>(
 [](const SSenderInfo& _sender, !
 SCommandAttachmentImpl<cmdUPDATE_TOPOLOGY>::ptr_t _attachment) {
 // User’s code
});

Subscribe to
messages

Subscribe to
channel events

Subscribe to
messages

dds-protocol news
•  Message header:

•  Add protocol header ID (PHID) containing either sender or receiver channel ID

8

•  One of the use cases for PHID is message forwarding:
•  A forwarding channel receives raw messages and pushes them further.

For instance, from network to shared memory;
•  No extra memory allocations, encoding and decoding of messages are

performed;

CRC
2 bytes

Command
2 bytes

Length
4 bytes

ID
8 bytes

Message header:

Sender or receiver
channel ID

Data
Length bytes

Binary attachment:

Lobby leader election
A lobby leader election: “First in takes all”.

9

Semaphore

SM
Forwarder

Member

SM
Agent

Agent

Leader

SM
Leader

Agent.
Member

SM
Agent

Agent.
Member

SM
Agent

•  A leader is the one who first owns a
SID semaphore;

•  Each lobby member sends a special
message to the leader with its
connection information;

•  The leader opens a channel and
sends back a confirmation;

•  Than a member sends a “lobby
member handshake” message to
Commander via SM Forwarder
channel of the leader;

•  Commander adds the agent to the
list of approved agents;

•  The communication is established.

…

Agent

A lobby

10

DDS
server

Member
SM

Intercom SM Agent

Leader

Task
SM Agent. Member.

SM
Intercom

SM
Agent

Task
SM

…

Network
commander

SM
Forwarder

Agent. Member.

SM
Intercom

SM
Agent

Task
SM

Lobby based deployment
• One network connection per host;

•  Local communications only via DDS
shared memory channels;

• Unified agents and an unified lobby
leader election;

• Efficient message forwarding;

•  dds-protocol via network and shared
memory channels;

• Handshake- and token-based
authentication;

11

DDS
Commander

server

Host

Host

Roadmap

•  v1.8 – developer release (ready)
•  Lobby based deployment and all DDS features are stable;
•  Working on tests for edge cases;

•  v2.0 - stable release
•  A public release of the new architecture (lobby based deployment);
•  Here’s hopping that architecture of DDS v2.x branch remains a

mainstream until final production, unless requirements change.

12

DDS v1.8 (developer release)
• Releases - DDS v1.8

•  http://dds.gsi.de/download.html
• DDS Home site:

•  http://dds.gsi.de
• User’s Manual:

•  http://dds.gsi.de/documentation.html
• Continues integration:

•  http://demac012.gsi.de:22001/waterfall
• Source Code:

•  https://github.com/FairRootGroup/DDS
•  https://github.com/FairRootGroup/DDS-user-manual
•  https://github.com/FairRootGroup/DDS-web-site
•  https://github.com/FairRootGroup/DDS-topology-editor

13

