
Status of ITS CA track reconstruction
Iacopo Colonnelli1,3, Matteo Concas1,3, Maximiliano Puccio2,3

Politecnico, University and INFN Torino

More on this topicmpuccio@cern.ch - Offline week - 09/11/17

https://indico.cern.ch/event/677067/contributions/2778748/attachments/1552164/2438948/Presentazione-2017-11-03.pdf
mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

CA reconstruction algorithm

2

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

CA reconstruction algorithm

2

I will show how the algorithm
works only for a limited

region of ITS for simplicity

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

CA reconstruction algorithm

2

I will show how the algorithm
works only for a limited

region of ITS for simplicity

For each cluster on each layer
a 2D window is opened. Then

the clusters are joined with
those on the next layer within

the window

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

CA reconstruction algorithm

2

Subsequent doublets are
combined in cells (3 points
seed) and track params are

computed

I will show how the algorithm
works only for a limited

region of ITS for simplicity

For each cluster on each layer
a 2D window is opened. Then

the clusters are joined with
those on the next layer within

the window

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

CA reconstruction algorithm

2

1 2
3

4

5

3

4

1

5

Subsequent doublets are
combined in cells (3 points
seed) and track params are

computed

Each cell has an index
representing the number of
connected inner cells + 1

I will show how the algorithm
works only for a limited

region of ITS for simplicity

For each cluster on each layer
a 2D window is opened. Then

the clusters are joined with
those on the next layer within

the window

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

CA reconstruction algorithm

2

1 2
3

4

5

3

4

1

5

Subsequent doublets are
combined in cells (3 points
seed) and track params are

computed

Each cell has an index
representing the number of
connected inner cells + 1

Longest, continuous
sequences of indices
represent candidates

1

I will show how the algorithm
works only for a limited

region of ITS for simplicity

For each cluster on each layer
a 2D window is opened. Then

the clusters are joined with
those on the next layer within

the window

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

Data layout

• Hits are sorted and stored according their azimuthal angle
and their z coordinate

• An index table is filled to quickly fetch the hits in the region
of interest of the detector
✓ Increase data locality
✓ Possible parallelisation

X
O O O
O O O

O O O

Layer 0 Layer 1

z z

φ φ

3

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

Computational hotspots

4

• Tracklet and cell finding part are responsible for ~90% of
the computing time: try to bring them to GPUs!

• atan2f is another computational hotspot that can be
optimised using a fast approximate algorithm.

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

Using CUDA

5

• CUDA programming model assumes that
GPU threads execute on a physically
separated device that operates as a
coprocessor to the host

• CUDA GPU parallelisation is managed by
specific C/C++ functions called kernels that,
when called, are executed N times in
parallel by N different CUDA threads

• Both the host and the device maintain their
own separate memory spaces in DRAM,
referred to as host memory and device
memory, respectively

• The presence of two separate memory
spaces means that data must be transferred
from host to device memory, to be
processed by kernels, and back to host
memory, to be processed by the host

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

GPU version structure

6

CPU GPU

I.Colonnelli master thesis

• Initialisation of data structure is performed on the host side (CPU)
• At least/Currently three device-host synchronisation barriers
• Final processing of cells to reconstruct track candidates on the CPU

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

Parallel tracklet (cell) finding

7

Tracklet finding and cell finding are dual, thus the same strategy is
adopted in both cases. Here the parallel tracklet finding description:
• Each CUDA thread processes one cluster on Layer n looking for

good matches on Layer n+1
• Whenever a good match is found a tracklet is added atomically in

the first free position in the output tracklet array
• The number of valid reconstructed tracklets for each cluster is

stored in a separate array
• Once the tracklet finding is finished, the prefix sum (scan)

algorithm is used on this data structure to create an index table
used for the subsequent cell finding step

• The counting sort is then used to reorganise the tracklets

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

Pattern recognition efficiency

8

• Track candidate reconstruction efficiency for pions with 7 hits on the
ITS is the same for both the CPU (serial) and the GPU version of the
algorithm.

• The performance is compatible with that obtained with a single
tracking iteration with the AliRoot CA prototype

CPU GPU
I.Colonnelli master thesis

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

Timing performance

9

• Test on 100 Pb-Pb central (0-5%) HIJING events simulated with AliRoot
• Pile-up obtained stacking several Pb-Pb events
• GPU speed-up increases with increasing pile-up (up to factor 10 with 5

vertices)
• Total times account also for the cells post processing (i.e. track

candidate reconstruction)

I.Colonnelli master thesis

• Serial CPU implementation
timing in parenthesises

• Speed-up of factor 12.7 in
the tracklet finding

• Speed-up of factor 5.7 in the
cell finding

• Overall speedup 4.5
• Trivial CPU parallelisation

can already reduce the
gap

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

GPU version computational hotspots

10

• GPU full exploitation in the tracklet finding and cell finding phase is
limited by the register pressure
• Further optimisation of the usage of the shared memory is needed to

improve the performance
• Asynchronous copy of data between host and device will improve the

kernel initialisation time

Kernel
executions

(GPU)

Memory
transfers

API calls
(CPU)

Scan +
Counting

sort
Cell finding

Scan + Counting
sort + copy to

host

Data to GPU +
index table
compilation

Tracklet finding

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

GPU version computational hotspots 2

11

• Context initialisation on CPU and for GPU memory allocation is now a
significant contribution to overall processing time for single events
• Vectorisation, change of the data structures and multi-threading will

be investigated to improve that
• Track fitting figures of merit will be available as soon as the porting in

the O2 framework will be ready

40.0 %

18.6 %
29.8 %

11.7 %

Time Occupancy Distribution

Context init
Tracklet finding
Cell finding
Other

Time Occupancy Distribution

18.0 %
25.2 %

52.0 %

4.8 %

Time Occupancy Distribution

Context init
Tracklet finding
Cell finding
Other

Time Occupancy Distribution

1 vertex 4 vertices

mailto:mpuccio@cern.ch

mpuccio@cern.ch - Status of CA code - 09/11/17

Current status and outlook

12

• Standalone version of the pattern recognition algorithm fully
tested and working
• Both CPU (serial) and GPU (CUDA) implementation there
• OpenCL support coming up…

• O2 framework integration ongoing (code in private forks)
• Track fitting and MC truth handling inherited by the

framework
• Testing will start soon and when successful PR will come.

• Future optimisations for GPU
• Asynchronous copy of data between host and device
• Better use of shared memory
• Move full processing there? Some algorithm challenges…

• Future optimisations for CPU
• Vectorisation using Vc and multi-threading

mailto:mpuccio@cern.ch
https://github.com/mpuccio/tracking-itsu
https://github.com/mpuccio/AliceO2/tree/dev

mpuccio@cern.ch - Status of CA code - 09/11/17

Testbed platform

13

• CPU: Intel i7-7700K (4.2GHz, 8MB Cache)

• RAM: Corsair DDR4 32GB (2×16) 2133MHz

• GPU: NVIDIA GeForce GTX 970 (SM 52, 1664 CUDA cores)

• OS: Linux Ubuntu 16.04 LTS

• C++ Host Compiler: Clang 3.8.0-2ubuntu4, with -O3
optimisation flag

• Device Toolkit: CUDA Toolkit V8.0.61

mailto:mpuccio@cern.ch

