

Monte Carlo, Recent issues and developments Catalin Ristea, DPG

production's perspective view (1)

i. I don't take credit for any of presented developments, other than faithful delivery of required productions and follow-up

Guideline to Geant4 Validation minutes of PB on 02 Feb 2017

- "CPU time for transport has decreased to **1.65x** Geant3 and doesn't impact significantly the overall CPU time for transport+digitization+rec (**x1.2**)
- The plan for 2017 is to have large scale tests involving several analyses, in particular those that are potentially more sensitive to the details of transport (calorimeters, electrons, low-pT protons)
- There is a preference to start with LHC10b (a minimum-bias sample and a sample with injected HF and J/psi → ee signals), with a modest sample size of about 10M events; the next candidates could be the pp and Pb-Pb samples at 5 TeV; other suggestions will be collected in a TWiki.
- Probably, for each sample, two parallel productions will be needed for the validation, one with G3 and one with G4"

Phase 1

- Validation production already started in Nov'15, ALIROOT-6439 and continuously maintained until Mar'17 – was LHC15k3* (pass4 2010 data)
 - Many software issues were solved at that time: pi0 mass, latest VMC package, argument processing issue, running time optimizations
 - Main conclusions:
 - Detector QA was done for
 - ITS, TRD, EmCAL, PHOS, TPC
 - The agreement Data/G3-G4 was found satisfactory for all detectors

Phase 2

- Efforts ramped-up Feb'17
- Validation moved to ALIROOT-7121, production LHC17c4*
 - Events fully validated by detector QA
 - Tracked in the Analysis QA sessions + PWG
 - Problems found:
 - Analysis QA
 - Kaon kink issues
 - Secondary particles' production

PWG Validation

DPG General Session, Jun'17 Ivana, LHCP, Jun'17

- PWG-DQ
 - TPC PID (electron inclusion, p, π exclusion), tracking
 - No big problems spotted, some points that require double check
- PWG-HF
 - K, π PID TOF/TPC, secondary vtx reco, tracking
 - No big problems spotted so far
- PWG-LF
 - check TPC-ITS matching efficiency, pt resolution, absolute efficiency, matching probability to TOF
- Careful checks still to be done

KAON Kink Issue

Geant4 bug fix

Momentum of decay particle was not correctly reconstructed by the NystromRK4 stepping (Ruben)

- It has been replaced by defaultRK4 stepping, with the drawback of 10-20% more running time (~2.5x more steps)
- Fix would be available in Geant4 master, to take back the time

Roberto, Andreas, comment in ALIROOT-7121

G4 dE/dx parametrization

- From: DPG & BTG Calibration & Tracking meetings,
 - P. Christiansen & J. Wiechula Jun'17, Jul'17

- New parametrization for TPC energy loss
 - Available starting with AliPhysics v5-09-17-01-1
- Data produced and validated into LHC17c4_hack

Production of Secondaries

ALIROOT-7427

 Differences between G3/G4 signal in the TOF time signal tail, and also near the proton peak, where G4 is close to the data (Roberto)

- TOF tail might be related to low energy neutron capture and emission, G3 agreement to data could be accidental (Andreas)
- Investigations ongoing, issue not a show-stopper

Conclusions

- Many contributors to prepare Geant4 for production
- Moderate issues to be fine tunned
- Ready to move to larger scale tests and systems
 - New MC generated for PWG productions:
 - LF: LHC16h7c_g4_2 (all runs from Pb-Pb, LHC15o)
 - **GA**: **LHC17g5a2** (2012 p-p)
 - G3 sub-cycles have been produced along side with the same software versions (and same OCDB snapshots)
- DPG: The upcoming pp reference MC general-purpose production will be done with both G3/G4 – once this done, we'll start using G4 for all productions

MC-to-MC Embedding

- Aimed to have in production for HI'18
- Background
 - Large number of productions dealing with injected signal + background events
 - Rough estimation, ~10% of all MC productions
 - Embedding envisaged long time ago
 - SDigits implementation exactly for this scope
 - Andreas & Federico, 2003 https://arxiv.org/pdf/physics/0306092.pdf

Embedding Strategies

Roberto, DPG Offline, Mar'17

BKG

Local merging (WORKING):

All done in the same job

Generate 1 background event (only simulation)
Generate N signal events

and merge to the same background

- No need to write SDigits to AliEn (save disk)
- No I/O via network
- No need to change LPM scheme
- Background event is saved, may be used
- Reuse factor cannot be too large

Global merging:

Create a pool of background events

SDigits to be reused for several productions

- Reuse factor can be large
- Can be used by more PWGs
- No need to change LPM scheme
- Complex workflow on LPM
- AliRoot/AliPhysics matching between background and signal

Maximum TTL

Maximum TTL

Production Validation

- Software preparation (Ruben)
 - Many fixes have been done,
 AliRoot/AliPhysics ready while ago and all included in AliDPG
- GRID preparation (Miguel, Predrag)
 - Developing and deploying the AliEn new functionality to store background event subfolder
 - Initial tests on several CERN sites, including Miguel's laptop :)
- Test events for physics validation produced
 - LHC17c1b
 - Factor 4 reduction in running time
 - Factor 2.5 reduction in disk space
 - ~3 GB RSS, ~8% job loss
 - To run analysis QA train

		276								
	VOBox									
Service	Address	AliEn version	Timestamp	CVMFS version						
1. Altaria	188.184.2.32,2001:1458:201:22:0:0:100:1a	v2-19.276	07.11.2017 21:14	2.3.2						
2. CERN-AURORA	188.184.2.45,2001:1458:201:22:0:0:100:27	v2-19.276	07.11.2017 21:03	2.4.2						
3. CERN-CORONA	137.138.47.232,2001:1458:201:b50e:0:0:100:3c	v2-19.276	07.11.2017 21:13	2.4.2						
4. CERN-MIRAGE	137.138.47.244,2001:1458:201:b50e:0:0:100:3d	v2-19.276	07.11.2017 21:07	2.4.2						
5. CERN-SIRIUS	172.17.0.2,2001:1458:201:b50e:0:0:100:3e	v2-19.276	07.11.2017 21:07	2.1.20						
6. CERN-TRITON	137.138.47.207,2001:1458:201:b50e:0:0:100:39	v2-19.276	07.11.2017 21:07	2.4.2						
7. CERN-ZENITH	188.184.2.30,2001:1458:201:22:0:0:100:18	v2-19.276	07.11.2017 21:11	2.4.2						
8. Grenoble	lpsc-vobox.in2p3.fr	v2-19.276	07.11.2017 21:11	2.1.19						
9. Nemesis	172.17.0.3,2001:1458:201:b50e:0:0:100:c	v2-19.276	07.11.2017 21:13							
10. NIPNE	vobox.nipne.ro	v2-19.276	07.11.2017 21:14	2.1.20						
11. Phoenix	188.184.2.37,2001:1458:201:22:0:0:100:1f	v2-19.276	07.11.2017 21:07	2.4.1						
12. Pikachu	188.184.2.36,2001:1458:201:22:0:0:100:1e	v2-19.276	07.11.2017 21:09	2.2.3						
13. Subatech	nanlcg03.in2p3.fr	v2-19.276	07.11.2017 21:11	2.1.20						
14. Trieste	alibox.ts.infn.it	v2-19.276	07.11.2017 21:05	2.3.2						

If everything is fine, to start thinking about "Global" merging for background events

- New interest in fast simulations due to the need of large data sets with specific signals, but including the full ALICE detector response:
 - QA tools
 - HF flavor analysis
 - ... (add your favorite topic here)
- Fast simulation tool (FT2) available for Upgrade studies:
 - https://alice.its.cern.ch/jira/browse/AOC-3
 - Developed/parametrized by Ruben and Johannes Stiller
 - Used for B meson analysis performance
 - Low mass dielectrons (Upgrade vs. Super-upgrade)
- For Run2 application major changes are needed:
 - Adopt current reconstruction
 - Parametrization of current perfromance
 - Manpower? Weight gain and cost...

STANDARD MC PRODUCTION AND ANALYSES

Johannes Stiller Ruben Shahoyan

Michael Weber (SMI)

FAST MC PRODUCTION AND ANALYSES

Johannes Stiller Ruben Shahoyan

Michael Weber (SMI)

FAST SIMULATION TOOL (FT2)

- Probe is propagated outward from vertex to maximum R distance with given step size and random clusters are generated
- Geant-like calculation (multiple scattering, energy loss) taking into account correct geometry (material budget)
- Probe reconstruction going inward using Kalman, track related to vertex
- Other features:
 - ExB distortions
 - Cluster pickup probability
 - TPC Cluster Error Parameterization
 - Conversion electrons
 - ...
- Parametrized to LHC13d19 (full upgrade simulation)

Johannes Stiller Ruben Shahoyan

Michael Weber (SMI)

Production anchor pass name

Production tag and anchoring									Request tracking
		F	iles			- Any - <u>▼</u>			
Tag	Jira tickets	Git	AliEn	Anchor prod.	Pass	Collision	Energy (GeV)		Comment
LHC17j4d_fast	7487			LHC16q	pass1	p-Pb	5,020	4	- Lambdac -> pK0s anchored LHC16qt, Hijing, FAST only
LHC17j4d_cent_wSDD	7487			LHC16q	pass1	p-Pb	5,020	4	- Lambdac -> pK0s anchored LHC16qt, Hijing, CENT
LHC17j4c_fast	7487			LHC16q	pass1	p-Pb	5,020	4	- Lambdac -> pKpi anchored LHC16qt, Hijing, FAST
LHC17j4c_cent_wSDD	7487			LHC16q	pass1	p-Pb	5,020	4	- Lambdac -> pKpi anchored LHC16qt, Hijing, CENT
LHC17j8c	7529			LHC15o	pass1	Pb-Pb	5,020	10	- HIJING cent 50-90 % + injected phi and K* anchored to Pb-Pb, (2015)
LHC17j8b	7529			LHC15o	pass1	Pb-Pb	5,020	10	- HIJING cent 10-50 % + injected phi and K* anchored to Pb-Pb, (2015)
LHC17j8a	7529			LHC15o	pass1	Pb-Pb	5,020	10	- HIJING cent 0-10 % + injected phi and K* anchored to Pb-Pb, (2015) data
LHC17j6b	7542			LHC17n	pass1	Xe-Xe	5,440	2	Xe-Xe, anchored to LHC17n with ITSrecopoints included, EPOS-LHC
LHC17j4b2	7487			LHC16d, LHC16e, LHC16g LHC16h, LHC16j, LHC16k LHC16l, LHC16o, LHC16p	pass1	р-р	13,000	37	- Lambdac -> pK0s, anchored to pp @, ported, LHC16d, e, g, h, j, k, l,
LHC17j4a2	7487			LHC16d, LHC16e, LHC16g LHC16h, LHC16j, LHC16k LHC16l, LHC16o, LHC16p	pass1	р-р	13,000	37	- Lambdac -> pKpi, anchored to pp @, ported, LHC16d, e, g, h, j, k, l,
LHC17j7	7531			LHC17n	pass1	Xe-Xe	5,440	2	Xe-Xe, General-purpose Monte Carlo Xe-Xe (LHC17n), HIJING
LHC17j6	7542			LHC17n	pass1	Xe-Xe	5,440	1	Xe-Xe, anchored to LHC17n with ITSrecopoints included
LHC17j4b	7487		<u>=</u>	LHC16d, LHC16e, LHC16g LHC16h, LHC16j, LHC16k	pass1	р-р	13,000	2	- Lambdac -> pK0s, anchored to pp @, LHC16d, e, g, h, j, k, l, o, p

- Original request (Jens, Pietro) to include the anchored RAW pass name for MC productions
- Easier to handle in the future with the OCDB timestamp functionality (see Francesco's talk)
- A bit of ambiguity due to variations like pass1/pass1_pidfix under discussion
- Link to page http://alimonitor.cern.ch/MC
- Written into ESDs and available at analysis level (PIDresponse → OADB, TPC splines)

Conclusions

- Geant4 validation continues, to be extended to other system(s) and energies
- MC-to-MC embedding ongoing development, in testing phase
- New tools being investigated (FT2)

DPG is grateful to get the support from all experts

Thank you!