Highlights from ATLAS

Isabelle Wingerter-Seez LAPP/CNRS - Annecy-France **On behalf of the ATLAS Collaboration**

Status of LHC data taking in Run 2 Summary of recent results, focusing on Higgs boson physics ATLAS upgrade program for LS2/Run 3 and HL-LHC

ttH, H→γγ candidate with a γγ pair, 1μ, 5 jets (1 b-tag jet) mγγ=126.3 GeV

Run: 310341 Event: 3252230282

2016-10-11 03:50:46 CEST

LHC performance for run 2 (2015-2018)

The pile-up challenge

The delivered luminosity is about a factor of 2 above the LHC design luminosity. The large number of additional interactions (pile-up) cause some performance degradation. Powerful pile-up mitigation techniques have been and are being developed. The performance loss is well described by Monte Carlo simulation.

ATLAS data taking in 2018

ATLAS has operated very well so far.

The fraction of operating channels is remaining very high after 10 years of operation: ≥95% Redundancy allows to maintain ~100% acceptance

Data taking efficiency: 95.5%

Data quality: **96.5%** (36/fb) fraction of collected data good for physics

Computing performing extremely well

Tier0 23k cores

Sustained production with smooth operations

with 300-350k cores

Moving >1PB/day, > 20GB/s, 1.5-2M files/day

	ATL	AS p	op da	ta: A	pril 2	25-A	ugu	st 20) 2018	018 Magnets enoid Toroid
Inn	er Tracl	ker	Calorii	neters	Mu	on Spe	ctrome	ter	Magn	ets
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.7	99.6	100	99.6	100	99.7	99.6	100	100	100	99.3

Good for physics: 96.5% (36.4 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions at \sqrt{s} =13 TeV between April 25 – August 20 2018, corresponding to a delivered integrated luminosity of 39.2 fb⁻¹ and a recorded integrated luminosity of 37.7 fb⁻¹. Dedicated luminosity calibration activities during LHC fills used 0.7% of recorded data and are included in the inefficiency. The luminosity includes 193 pb⁻¹ of good data taken at an average pileup of μ =2.

THE MISSION of the LHC

LHC Explore the TeV energy range

Direct searches for Physics Beyond the Standard Model at the highest energies

Exploration of the Higgs sector

Precision measurements of the Higgs boson properties

Higgs boson couplings Self coupling New Higgs bosons ?

SMALL CROSS SECTION HIGH LUMINOSITY

Standard Model Production Cross Section Measurements

Status: July 2018

Progress: example of the $H \rightarrow ZZ \rightarrow 4I$ channel

Higgs boson discovered in July 2012 at LHC, by the ATLAS and CMS collaborations. Is the new particle THE SM Higgs boson ? \rightarrow Measure its properties

Standard Model Lagrangian

Higgs boson measurements at LHC test new part of the Standard Model HV **Describes** everything experimental confirmed .C. before 2012. **The Higgs sector** Yukawa couplings with Higgs boson (completely new interaction type) ttH, H \rightarrow bb and H \rightarrow tt are important Gauge boson interaction with Higgs boson (new for scalar, but known for fermion) $W^{+}. Z$ Higgs potential ($\mu^2 \Phi^2 + \lambda \Phi^4$) Inspired by Gavin Salam - LHCP 2018 (to be explored at HL-LHC)

¹⁰th September 2018

Higgs boson production and decays

Four main channels at the LHC $\sigma_{\rm H} = 56 \text{ pb at } \sqrt{\text{s}=13 \text{ TeV}}$ ~6 millions Higgs bosons produced in ATLAS

Many decays are accessible at the LHC

In SM, bb larget BR

--- H

λt

drives the total width

measurement of absolute couplings

Measurement of H→bb limits BSM branching fraction allowed

Gauge boson and Yukawa fermion coupling

Differential fiducial cross-section using gauge boson decays

Differential cross-section becoming more and more precise with increasing statistics. Data well described by recent SM predictions.

10th September 2018

Simplified template cross-section measurements included in the publication.

Observation of ttH production

December 2017 (36/fb): 4.2 σ (3.8 σ) obs (exp) (*) June 2018: update ttH(H $\rightarrow\gamma\gamma$) and ttH (H \rightarrow ZZ \rightarrow 4l) with **80fb-1**

tt	:Н - Н→үү		
≥ 35 + Data	ATLAS		
	Background $\sqrt{s} = 13 \text{ Te}$	V, <mark>80 fb[.]</mark>	1 =
Total Back	ground m _H = 125.09 (GeV	-
တ္ 25 – – Signal + Ba	ackground All categories	abtad aum	
	IП(1+5/В) wei	gnied sum	_
	i-photon mass [GeV]	+ + 150 m	+ + + 160 η [GeV]
Analysis	Integrated	Obs.	Exp.
	luminosity $[fb^{-1}]$	sign.	sign.
$H \to \gamma \gamma$	79.8	4.1σ	3.7σ
$H \rightarrow \text{multilepton}$	36.1	4.1 σ	2.8 σ
$H \to b\bar{b}$	36.1	1.4 σ	1.6 σ
$H \to ZZ^* \to 4\ell$	79.8	0σ	1.2σ
Combined (13 TeV)	36.1 - 79.8	5.8σ	4.9σ
Combined $(7, 8, 13 \text{ TeV})$	4.5, 20.3, 36.1–79.8	6.3σ	5.1σ

Direct observation of top Higgs coupling. Confirmation of Yukawa coupling to fermions.

> (*) Phys. Rev. D 97 (2018) 072003 Phys. Rev. D 97 (2018) 072016 arXiv:1802.04146

10th September 2018

Run: 331742 Event: 1873900334 2017-08-04 21:48:42 CEST

ttH, H→γγ candidate with a γγ pair, 1 electron, 4 jets (1 b-tag jet) mγγ=125.3 GeV

ttH production cross-section

June 2018: update ttH(H $\rightarrow\gamma\gamma$) and ttH (H \rightarrow ZZ \rightarrow 4I) with **80fb-1**

Associated VH production and H→bb

H→bb highest branching ratio Br=58% Br(H→bb) constrains invisible Higgs boson decays Tests Higgs boson Yukawa coupling to fermions Analysis with large background Use high-p_T boson region **Multi-variate analysis in 0,1 and 2 lepton channels**

Di-jet mass analysis as cross-check

arXiv:1808.08238

di-boson validation analysis VZ ($Z \rightarrow bb$)

Associated production WH and ZH (VH)

Observation of H→bb

Observation of Higgs boson decay to b-quarks

 VH alone

 4.9σ (4.3σ) obs (exp) - 13 TeV

 4.9σ (5.1σ) obs (exp) - Runs 1 + 2

Combining VBF, ttH and VH results, from 7,8 and 13 TeV datasets: 5.4σ (5.5σ) obs (exp)

Higgs production mode

Higgs coupling measurements

arXiv:1808.08238

WZ and WZjj production

Electroweak production of WZ bosons in association with two jets: $pp \rightarrow W^{\pm}Z$ jet jet Process sensitive to triple and quartic gauge couplings and anomalous couplings.

5.6σ (3.3σ) obs (exp) Observation of EW W/Z jet jet process

Total fiducial WZ jet jet cross-section σ_{EW}(pp→W±Z jet jet)=0.57±0.15 fb LO (Sherpa): 0.32±0.03 fb

ATLAS-CONF-2018-034

Also, new result on inclusive WZ production Fiducial cross-section in agreement with NNLO

QCD (inclusive and differential) Evidence for longitudinal W polarisation (4.2 σ) Measurement of Z polarisation

Measurement of electroweak parameters

Active BSM searches

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$

10 TeV

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss}	∫£ dt[fb	⁻¹] Limit	_	_	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e,\mu\\ 2 \ \gamma\\ -\\ \ge 1 \ e,\mu\\ -\\ 2 \ \gamma\\ \\ multi-channel\\ 1 \ e,\mu \ \ge\\ 1 \ e,\mu \ \ge\\ 1 \ e,\mu \ \ge\\ \end{array}$	$1 - 4 j$ $-$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $1 b, \geq 1 J/$ $\geq 2 b, \geq 3$	Yes - - - - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	М _D M _S M _{th} M _{th} G _{KK} mass G _{KK} mass g _{KK} mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 3.8 TeV 1.8 TeV	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ NLO}\\ n &= 6\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 1.0\\ \Gamma/m &= 15\%\\ \text{Tier } (1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to \tau\nu \\ \mathrm{HVT}\; V' \to WV \to qqqq \mbox{ model} \\ \mathrm{HVT}\; V' \to WH/ZH \mbox{ model} \\ \mathrm{LRSM}\; W'_R \to tb \end{array}$	$\begin{array}{l} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ \tau \\ e \ D \ e, \mu \\ multi-channel \\ multi-channel \end{array}$	_ 2 b 1 b, ≥ 1J/ _ 2 J	– – 2j Yes Yes Yes –	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W' mass W' mass	4.5 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 3.7 TeV 4.15 TeV 2.93 TeV 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
MQ	Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM)	Λ) 0 e, μ DM) 0 e, μ 0 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	m _{med} m _{med} M. 700 GeV	1 55 TeV .67 TeV	g_q =0.25, g_χ =1.0, $m(\chi)$ = 1 GeV g =1.0, $m(\chi)$ = 1 GeV $m(\chi)$ < 150 GeV	1711.03301 1711.03301 1608.02372
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass 1.1 T LQ mass 1.05 Te LQ mass 640 GeV	e /	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;B \rightarrow Hb + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	multi-channel multi-channel $2(SS)/\geq 3 e,\mu$ $1 e, \mu$ $0 e,\mu, 2 \gamma$ $1 e, \mu$	≥1 b, ≥1 j ≥ 1 b, ≥ 1j ≥ 1 b, ≥ 1j ≥ 4 j	Yes j Yes j Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1. B mass 1.3 T 5/3 mass 1 Y mass 1 B mass 1 Q mass 690 GeV	8 TeV 2 TeV .64 TeV 4 1 TeV 1 3V	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-XXX ATLAS-CONF-2018-XXX CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-XXX 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j –	- - - -	37.0 36.7 36.1 20.3 20.3	q* mass q* mass b* mass t* mass v* mass	6.0 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$ \begin{array}{r} 1 \ e, \mu \\ 2 \ e, \mu \\ 2,3,4 \ e, \mu (SS) \\ 3 \ e, \mu, \tau \\ 1 \ e, \mu \\ - \\ - \\ \sqrt{s} = 8 \ \text{TeV} \end{array} $	≥ 2 j 2 j - - 1 b - - -	Yes Yes 3 TeV	79.8 20.3 36.1 20.3 20.3 20.3 7.0	Nº mass 560 GeV Nº mass High and a second	2.0 TeV	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $a_{\text{non-res}} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059
*On	ly a selection of the availab	le mass limit	s on nev	v states	s or pher	nomena is shown.	· · ·	Mass scale [TeV]	

1 TeV

†Small-radius (large-radius) jets are denoted by the letter j (J).

Search for heavy charged long-lived particles using ionisation - $\sqrt{s=13}$ TeV (36/fb)

arXiv:1808-04095 Trigger on E_T^{miss} - Event selection $E_T^{miss} > 170 \text{ GeV}$ - High p_T track with large dE/dx Mass determined by the relation between dE/dx and momentum. R-hadron in SUSY R-parity violated models

m(ĝ) [GeV]

Active SUSY search program

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2018

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} dt [\mathbf{fb}]$	¹] Mass limit		$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
S	$ ilde{q} ilde{q}, ilde{q} ightarrow q ilde{\mathcal{X}}_1^0$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	 <i>q̃</i> [2x, 8x Degen.] <i>q̃</i> [1x, 8x Degen.] 0.43 	0.9	1.55 $m(\tilde{\chi}_{1}^{0}) < 100 \text{ GeV}$ $m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$	1712.02332 1711.03301
arches	$\tilde{g}\tilde{g}, \tilde{g} ightarrow q ilde{q} ilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	ĩg ĩg	Forbidden	2.0 m($\tilde{\chi}_1^0)$ > 200 GeV 0.95-1.6 m($\tilde{\chi}_1^0)$ = 900 GeV	1712.02332 1712.02332
/e Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets	- Yes	36.1 36.1	Ĩ Ĩ		$\begin{array}{ccc} \textbf{1.85} & m(\tilde{\chi}_1^0){<}800\text{GeV} \\ \textbf{1.2} & m(\tilde{g}){-}m(\tilde{\chi}_1^0){=}50\text{GeV} \end{array}$	1706.03731 1805.11381
nclusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> ,µ	7-11 jets 4 jets	Yes	36.1 36.1	ε̃ δ	0.98	1.8 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{g}) \cdot m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	1708.02794 1706.03731
4	$\tilde{g}\tilde{g},\tilde{g}\! ightarrow\!tt\tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 <i>b</i> 4 jets	Yes -	36.1 36.1	δδ δδ		2.0 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ 1.25 $m(\tilde{g}) \cdot m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	1711.01901 1706.03731
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	 <i>b</i>₁ <i>b</i>₁ <i>Forbidden</i> <i>b</i>₁ <i>Forbidden</i> 	0.9 0.58-0.82 0.7	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}1\\ m(\tilde{\chi}_{1}^{0}){=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}BR(k\tilde{\chi}_{1}^{+}){=}0.5\\ m(\tilde{\chi}_{1}^{+}){=}200~GeV,~m(\tilde{\chi}_{1}^{+}){=}300~GeV,~BR(k\tilde{\chi}_{1}^{+}){=}1\end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
arks tion	$\tilde{b}_1\tilde{b}_1, \tilde{t}_1\tilde{t}_1, M_2 = 2 \times M_1$		Multiple Multiple		36.1 36.1	ί _ι ί _ι Forbidden	0.7 0.9	${f m}(ilde{\chi}_1^0){=}60{ m GeV}$ ${f m}(ilde{\chi}_1^0){=}200{ m GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
gen. squa ct produc	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0 $ $ \tilde{t}_1 \tilde{t}_1, \tilde{H} \text{ LSP} $	0-2 <i>e</i> , <i>µ</i> 0	0-2 jets/1-2 Multiple Multiple	2 b Yes	36.1 36.1 36.1	 <i>i </i>	1.0 0.4-0.9 0.6-0.8	$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=150 \text{ GeV}, m(\tilde{\chi}_{1}^{\dagger})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{L}$ $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, m(\tilde{\chi}_{1}^{\dagger})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{L}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
3 rd g	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP		Multiple		36.1	Ĩ.	0.48-0.84	$m(\tilde{\chi}_1^0) = 150 \text{ GeV}, m(\tilde{\chi}_1^{\pm}) \cdot m(\tilde{\chi}_1^0) = 5 \text{ GeV}, \tilde{t}_1 \approx \tilde{t}_L$	1709.04183, 1711.11520
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i> mono-jet	Yes Yes	36.1 36.1	$ \vec{t}_{1} = 0.46 $ $ \vec{t}_{1} = 0.43 $	0.85	$m(\tilde{k}_{1}^{o})=0$ GeV $m(\tilde{t}_{1},\tilde{c})-m(\tilde{k}_{1}^{0})=50$ GeV $m(\tilde{t}_{1},\tilde{c})-m(\tilde{k}_{1}^{0})=5$ GeV	1805.01649 1805.01649 1711.03301
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	Yes	36.1	ĩ ₂	0.32-0.88	$m(ilde{\chi}_1^0)$ =0 GeV, $m(ilde{\iota}_1)$ - $m(ilde{\chi}_1^0)$ = 180 GeV	1706.03986
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	- ≥ 1	Yes Yes	36.1 36.1	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = 0.17 $	0.6	$\mathfrak{m}(ilde{\chi}_1^0){=}0$ $\mathfrak{m}(ilde{\chi}_1^{\pm}){-}\mathfrak{m}(ilde{\chi}_1^0){=}10~\mathrm{GeV}$	1403.5294, 1806.02293 1712.08119
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	<i>ℓℓ/ℓγγ/ℓbb</i>	-	Yes	20.3	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ 0.26		$m(\tilde{\chi}_1^0)=0$	1501.07110
EW lirect	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$	2 τ	-	Yes	36.1	$ ilde{\chi}_{1}^{\pm}/ ilde{\chi}_{2}^{0}$ $ ilde{\chi}_{1}^{\pm}/ ilde{\chi}_{2}^{0}$ 0.22	0.76	$\begin{split} &m(\tilde{\chi}_{1}^{0}){=}0,m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0}))\\ &m(\tilde{\chi}_{1}^{\pm}){-}m(\tilde{\chi}_{1}^{0}){=}100~GeV,m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0})) \end{split}$	1708.07875 1708.07875
0	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{\mathrm{U}}$	2 e,μ 2 e,μ	0 ≥ 1	Yes Yes	36.1 36.1	 ℓ 0.5 ℓ ℓ 0.18 		$\begin{array}{c} m(\tilde{\ell}_1^0) = 0 \\ m(\tilde{\ell}) \cdot m(\tilde{\ell}_1^0) = GeV \end{array}$	1803.02762 1712.08119
	Η̈́Ĥ, H́→hĜ/ZĜ	0 4 <i>e</i> ,µ	$\geq 3b$ 0	Yes Yes	36.1 36.1	<i>H</i> 0.13-0.23 <i>H</i> 0.3	0.29-0.88	$\begin{array}{c} BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 1804.03602
ed ss	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	$ \tilde{\chi}_{1}^{\pm} = 0.46 $ $ \tilde{\chi}_{1}^{\pm} = 0.15 $		Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
g-liv ticle	Stable \tilde{g} R-hadron	SMP	-	-	3.2	Ŝ		1.6	1606.05129
par	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^{\circ}$	2 v	Multiple -	Voc	32.8 20.3	$\tilde{g} = [\tau(\tilde{g}) = 100 \text{ ns}, 0.2 \text{ ns}]$ $\tilde{v}^0 = 0.44$		1.6 2.4 $m(\tilde{k}_1^0)=100 \text{ GeV}$	1710.04901, 1604.04520
	$\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/µ	μ -	-	20.3	ğ		1.3 $6 < c\tau(\tilde{\chi}_1^0) < 1000 \text{ mm, m}(\tilde{\chi}_1^0) = 1 \text{ TeV}$	1504.05162
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	εμ,ετ,μτ	-	-	3.2	$\tilde{\nu}_{\tau}$		1.9 λ' ₃₁₁ =0.11, λ _{132/133/233} =0.07	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e,µ	0	Yes	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$	0.82	1.33 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	0 4-	-5 large-R j	jets -	36.1	\tilde{g} [m($\tilde{\chi}_1^0$)=200 GeV, 1100 GeV]	10	1.3 1.9 Large $\lambda_{112}^{\prime\prime}$	1804.03568
PV	~0~0		Multiple		36.1	$\tilde{g} = [\lambda_{112}^{\mu} - 1 + 1 + 2]$	1.0	2.0 $m(\chi_1)=200$ GeV, bino-like	ATLAS-CONF-2018-003
Ц	$\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to tt \chi_1^{-}, \chi_1^{-} \to tbs$		Multiple		36.1	$\tilde{z} = [\lambda_{323}^{-1}, 16-2]$	5 10	1.8 2.1 $m(\chi_1^{-})=200 \text{ GeV}$, bino-like $m(\tilde{\chi}_1^{0})=200 \text{ GeV}$	ATLAS-CONF-2018-003
	$\begin{array}{c} tt, t \to t\mathcal{X}_1, \mathcal{X}_1 \to tbs \\ \tilde{t}_1 \tilde{t}_1 & \tilde{t}_1 \to bs \end{array}$	0	2 iets + 2	b -	36.7	\tilde{t}_{1} [<i>aa</i> , <i>bs</i>] 0.42	0.61	$m(\chi_1)=200$ GeV, bino-like	1710 07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$	2 e, µ	2 b	-	36.1			0.4-1.45 BR(<i>ĩ</i> ₁ → <i>be</i> / <i>b</i> µ)>20%	1710.05544
Only	a selection of the available ma	ss limits on r	new state	es or	1	-1		1 Mass scale ITeV1	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

10th September 2018

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Rich harvest of heavy ions results - one example

10th September 2018

The main proton-proton physics goal

Run 1 (7-8 TeV)

Discovery of Higgs boson

Searches for additional new physics (negative)

Observation of rare processes, such as $B_s \rightarrow \mu \mu$

Precision measurements of Standard Model processes

Study of CP asymmetries in the Bs sector

Run 2 & 3 (13-14 TeV)

Searches for new physics

Improved measurements of Higgs boson coupling in main channels

Consolidation and observation of Higgs boson channels

Measurements of rare Standard Model processes & more precision

Improved measurements of rare B decays and CP asymmetries

HL-LHC (14 TeV)

Precision measurements of Higgs boson couplings

Observation of very rare Higgs boson modes

Ultimate new physics search reach (on mass and forbidden decays, e.g. FCNC)

Ultimate SM & HF physics precision for rare processes

The ATLAS detector: Phase-I upgrades

Muon New Small Wheel

Liquid Argon Trigger electronics Frontend & Backend

Pre-production LTDB with fiber trough

Trigger and Data Acquisition

Improved LAr calorimeter segmentation for L1 eFex, jFex, gFex.... BIM

New Small Wheel for improvement b a c k g r o u n d rejection at L1

FINAL ADJUSTMENTS for PRODUCTION - VERY INTENSE CONSTRUCTION PERIOD AHEAD of US for INSTALLATION DURING LS2

FELIX board

The ATLAS detector: Phase-II upgrades

Status of the Phase II upgrade for HL-LHC

All six TDRs of the ATLAS Phase-II upgrade programme have been presented by ATLAS, review and approved by the LHC Committee and the Upgrade Cost Group, and finally approved by the CERN research board.

Silicon Strip + Pixel tracker

tracker Muon system

Calorimeters

TDAQ

In addition, ATLAS is preparing a TDR for the High Granularity timing detector.

Towards update of the European Strategy: preparation of CERN Yellow Report with updated projections for HL-LHC.

Conclusions and outlook

ATLAS continues prolific physics production: total of **787** papers on collision data

ATLAS collects high luminosity pp collision data with very high efficiency.

In 2012 a Higgs boson was discovered (ATLAS and CMS) In 2018, ATLAS

observed key production and decay modes of the Higgs boson $H\rightarrow bb$, ttH and VH production measured more low cross-section SM processes pushed the limits of Beyond the SM processes

In parallel, ATLAS is preparing the installation in 2019 and 2020 of the phase-I upgrade and getting ready for the construction of the phase-II detector upgrade

Excellent performance of the injectors+LHC: Thank you!

700

600

500