

On behalf of LHCb

LISHEP2018, Salvador, Bahia

Why heavy (quark) flavour?

- A very rich field, and a vast laboratory to test the SM
- Heavy b mass \rightarrow Easier to understand theoretically $(\alpha_s(m_b) \approx 0.2, \Lambda_{QCD}/m_b \approx 0.1)$
- b (and c) lifetimes long enough for experimental detection (τ_b~1.5 10-12 s)
- Sizeable CP violation expected in many b decays
 - Large CPV effects expected in processes which involve quarks from all three generations
- Most TeV new physics contains new sources of CP and flavour violation
- The observed baryon asymmetry of the Universe requires CPV beyond the SM
 - Not necessarily in flavour changing processes, nor necessarily in quark sector, it could originate from lepton sector

Why heavy (quark) flavour (II)?

 In the SM, some rare decays are forbidden at tree level and can only occur at loop level (penguin and box), e.g. B_s →µ+µ- (Talk by João Coelho)

 A new particle, too heavy to be produced at the LHC, can give sizeable effects when exchanged in a loop (e.g. modify branching fractions, angular

- Strategy: use well-predicted observables to look for deviations
- Indirect approach to New Physics searches, complementary to that of ATLAS/CMS

LHCb detector: the essentials

Luminosity @ LHCb

- Experiment designed to run at constant luminosity throughout fills
 - 4 x 10³² cm⁻² sec ⁻¹ (to be raised to 2 x 10³³ cm⁻² sec ⁻¹ in Run 3)
 - mean number of interactions/bunch crossing ~1

Last year of LHCb as we know it!

- LHCb is building its Upgrade I to be installed during Long Shutdown 2 (2019-20)→Factor 5 increase in Lumi: 2 x10³³ cm⁻² sec ⁻¹
- Possible LHCb detector consolidation and modest enhancements in LS3 (2025) -ATLAS/CMS Phase II upgrades also in LS3
- Major LHCb Upgrade II in LS4 (2030) → Factor 10 increase in instantaneous Lumi: 2 x10³⁴ cm⁻² sec ⁻¹ (Expression of Interest in CERN-LHCC-2017-003 and physics document in CERN/LHCC 2018-027)

Last year of LHCh as we know it!

Physics Case for an LHCb Upgrade II

Opportunities in flavour physics, and

beyond, in the HL-LHC era

 LHCb is building its Upgrade (2019-20)→Factor 5 increase

Run2

13 TeV

2012 2014

Run1

7,8 TeV

We are

2018 2020

- Possible LHCb detector consoli ATLAS/CMS Phase II upgrades
- Major LHCb Upgrade II in LS4 (2 2 x10³⁴ cm⁻² sec ⁻¹ (Expression document in CERN/LHCC 2018-0____

tdown 2

LS3 (2025) -

neous Lumi: nd physics

The upgraded detector

• Less than 10% of all channels will be kept! New RO electronics Tracker Upstream Tracker New DAQ & data centre scintillating fibres SPD/PS VELO Magnet pixel RICH 40 MHz Readout Software trigger only Calorimetry and muons: RICH new replace RO electronics photodetectors & remove redundant components

ne NEW

detector

• Less than 10% of all channels will be kept! New RO electronics Tracker Upstream Tracker New DAQ & data centre scintillating fibres SPD/PS VELO Magnet pixel RICH 40 MHz Readout Software trigger only Calorimetry and muons: RICH new replace RO electronics photodetectors & remove redundant components

Installation starts in six months!

VELO sensor tiles testing device

SciFI module

CALO electronics

VELO module

UT sensor

Test of MUON electronics

RICH MaPMTs under test

CKIM Matrix

The CKM matrix VCKM describes the decay of one quark to another by the emission of a W

$$\left(egin{array}{cccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

- The probability of the transition from flavour i to flavour j is $\sim |V_{ij}|^2$
- Probability of b to c decay $\sim |V_{cb}|^2$

- V_{CKM} depends on 3 mixing angles and 1 phase, which is the only source of CP violation in SM
- Phase only present with N≥3 generations (Nobel prize 2008)
 - With N=2, all phases can be removed → matrix real → no CPV
- These 4 parameters (3 angles, 1 phase) must be determined experimentally
- V_{CKM} unitary: unitarity constraints can be seen as sum of three complex numbers closing a triangle in complex plane

$$\sum_{i} V_{ij} V_{jk}^* = 0 \text{ for } j \neq k$$

 Check consistency of Unitary Triangles through precise measurements

Most open triangle: i = d, k = b

Measuring y

ratio of interfering B

, γ from tree-level processes is SM "standard candle" $A_{\sup}/A_{\operatorname{fav}} = r_B e^{i(\delta_B \pm \gamma)}$ $V_{ch} = v_{ub} \sim e^{-i\gamma}$ strong phadifferer

difference

- yields results unpolluted by NP
- Golden mode $B^- o DK^-$

- Sensitivity from interference of $b \rightarrow c$ and $b \rightarrow u$ amplitudes through final states accessible to both D^0 and $ar{D}^0$
- Many different methods and decay modes $(K\pi, K3\pi, KK, K_c^0\pi\pi, \ldots)$

- Uncertainty on world average ~5°, driven by LHCb
- Consistent with indirect precision but.. not as precise

Indirect prediction from rest of triangle (~2° precision)

- D reconstructed using the three-body, self-conjugate final state
- Sensitivity to γ by comparing Dalitz plot distributions for B+ and B-
- Input on strong phase difference between D^0, \overline{D}^0 decay amplitudes across Dalitz plot taken from quantum correlation of $D^0\overline{D}^0$ pairs from $\psi(3770)$ decays \rightarrow model independent measurement [CLEO, PRD 82 (2010) 112006]
- Analysis of ~4500 decays from 2 fb⁻¹ in Run 2

- D reconstructed using the three-body, self-conjugate final state
- Sensitivity to γ by comparing Dalitz plot distributions for B+ and B-
- Input on strong phase difference between D^0, \overline{D}^0 decay amplitudes across Dalitz plot taken from quantum correlation of $D^0\overline{D}^0$ pairs from $\psi(3770)$ decays \rightarrow model independent measurement [CLEO, PRD 82 (2010) 112006]
- Analysis of ~4500 decays from 2 fb⁻¹ in Run 2

- D reconstructed using the three-body, self-conjugate final state
- Sensitivity to γ by comparing Dalitz plot distributions for B+ and B-
- Input on strong phase difference between D^0, \overline{D}^0 decay amplitudes across Dalitz plot taken from quantum correlation of $D^0\overline{D}^0$ pairs from $\psi(3770)$ decays \rightarrow model independent measurement [CLEO, PRD 82 (2010) 112006]
- Analysis of ~4500 decays from 2 fb⁻¹ in Run 2

- D reconstructed using the three-body, self-conjugate final state
- Sensitivity to γ by comparing Dalitz plot distributions for B+ and B-
- Input on strong phase difference between D^0, \overline{D}^0 decay amplitudes across Dalitz plot taken from quantum correlation of $D^0\overline{D}^0$ pairs from $\psi(3770)$ decays \rightarrow model independent measurement [CLEO, PRD 82 (2010) 112006]
- Analysis of ~4500 decays from 2 fb⁻¹ in Run 2

Combining with Run-1

$$\gamma = (87 + 11 \\ -12)^{\circ}$$

Most precise measurement from a single analysis (fixes a single, narrow solution)

Updated LHCb y combination

LHCb-CONF-2018-002

 Nice complementarity of the input methods, which vary in precision and number of solutions

The power of the combination (B+)

,	$B \operatorname{decay}$	$D \operatorname{decay}$	Method	Ref.	Dataset
	$B^+ \to DK^+$	$D \rightarrow h^+h^-$	GLW	[14]	Run 1 & 2
	$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1
	$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[15]	Run 1
	$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1
New	$B^+ \to DK^+$	$D \to K_{\rm S}^0 h^+ h^-$	GGSZ	[17]	Run 1
	$B^+ \to DK^+$	$D \to K_{\rm S}^0 h^+ h^-$	GGSZ	[18]	Run 2
New	$B^+ \to DK^+$	$D \to K_{\mathrm{s}}^0 K^+ \pi^-$	GLS	[19]	Run 1
	$B^+ \to D^* K^+$	$D \to h^+ h^-$	GLW	[14]	Run 1 & 2
	$B^+ \to DK^{*+}$	$D \rightarrow h^+ h^-$	$\operatorname{GLW}/\operatorname{ADS}$	[20]	Run 1 & 2
	$B^+ \to DK^{*+}$	$D \to h^+ \pi^- \pi^+ \pi^-$	GLW/ADS	[20]	Run 1 & 2
	$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	GLW/ADS	[21]	Run 1
New	$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[22]	Run 1
	$B^0\! o DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[23]	Run 1
	$B^0 \to DK^{*0}$	$D \to K_{\rm S}^0 \pi^+ \pi^-$	GGSZ	[24]	Run 1
	$B_s^0 \to D_s^\mp K^\pm$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	Run 1
	$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	[26]	Run 1
				//	

Updated LHCb y combination

LHCb-CONF-2018-002

• Breakdown by B meson type (results consistent at 2σ level)

$$\gamma = (74.0 + 5.0)^{\circ}$$

Dominating the WA:

$$\gamma = (73.5.0^{+4.2}_{-5.1})^{\circ}$$
 (HFLAV, winter '18)

 B^{\pm}, B^0, B_s combination is an LHCb triumph (Ph.Urquijo, ICHEP'18)

- Indirect constraints give $\gamma = (65.8 \pm 2.2)^\circ$ (UTfit, summer 2018, prel.)
 - Slight tension to be monitored as precision improves
 - Measurement statistically dominated (3° to 4° precision at the end of Run 2)

Lepton Flavour Universality

- The property that the three charged leptons (e, μ , τ) couple in a universal way to the SM gauge bosons
- In the SM the only flavour non-universal terms are the three lepton masses: $m_{\tau}/m_{\mu}/m_{e} \leftrightarrow 3477 / 207 / 1$
- If NP couples in a non-universal way to the three lepton families, then we can discover it by comparing classes of rare decays involving different lepton pairs (e.g. e/μ or μ/τ)

The family of R ratios

• Comparing the rates of $B \to H \mu^+ \mu^-$ and $B \to H e^+ e^-$ allows precise testing of lepton flavour universality

$$R_{\rm H} \left[q_{\rm min}^2, q_{\rm max}^2 \right] = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} dq^2 \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2}}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} dq^2 \frac{d\Gamma(B \to He^+e^-)}{dq^2}}, \quad q^2 = m^2(\ell\ell)$$

$$H=K,K^*,\phi,...$$

- $b o s\ell\ell$ flavour-changing neutral currents with amplitudes involving loop diagrams
- These ratios are clean probes of NP:
 - Sensitive to possible new interactions that couple in a non-universal way to electrons and muons
 - Small theoretical uncertainties because hadronic uncertainties cancel: in SM, $R_{\rm H}=1$ neglecting lepton masses, with QED corrections at ~% level

The R_K* ratio

$$R_{K^{*0}} \left[q_{\min}^2, q_{\max}^2 \right] = \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}{dq^2}}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B^0 \to K^{*0} e^+ e^-)}{dq^2}}, \quad K^*(892)^0 \to K^+ \pi^-$$

- LHCb performed measurement in two *q*² bins:
 - Low-q² bin: [0.045,1.1] GeV²
 - Central-q² bin: [1.1,6.0] GeV²

A very challenging measurement!

- Lepton identification is anything but universal!
 - Electrons emit a large amount of bremsstrahlung, degrading mass resolution→ need to recover energy using clusters in the calorimeter
 - Due to higher occupancy of calorimeters, trigger thresholds are higher for electrons (~2.5 to 3.0 GeV) than for muons (~1.5 to 1.8 GeV) → decays with electrons also selected using hadron trigger either fired by K* products or by any other particle in the event not associated with signal

Measure as a double ratio

• To mitigate muon and electron differences due to bremsstrahlung and trigger, measurement performed as a double ratio with "resonant" control modes $B^0 \to J/\psi K^*$ which are not expected to be affected by NP:

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0}e^+e^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$

- → Relevant experimental quantities: yields & efficiencies for the four decays
- Similarities between the experimental efficiencies of the non resonant and resonant modes ensure a substantial reduction of systematic uncertainties in the double ratio

Results

Comparison with SM predictions

BIP: arXiv:1605.07633 CDHMV: arXiv:1510.04239, 1605.03156, 1701.08672 EOS: arXiv:1610.08761, https://eos.github.io flav.io: arXiv:1503.05534, 1703.09189, flav-io/flavio JC: arXiv:1412.3183

Comparison with BaBar & Belle

BaBar: PRD 86 (2012) 032012 Belle: PRL 103 (2009) 171801

LHCb: JHEP 08 (2017) 055 $\int \mathcal{L} dt \sim 3 \, \mathrm{fb}^{-1}$

$$R_{K^*} = \begin{cases} 0.66_{-0.07}^{+0.11} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \,\text{GeV}^2 \\ 0.69_{-0.07}^{+0.11} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 < q^2 < 6.0 \,\text{GeV}^2 \end{cases}$$
 2.1 - 2.3 σ

Crosschecks

- $\bullet \quad r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} = 1.043 \pm 0.006 \pm 0.045$
 - very stringent test of absolute scale of efficiencies that does not benefit from the cancellation of the experimental systematics from the double ratio
 - compatible with being independent of decay kinematics (p_T , η of the B^0 candidate) and track multiplicity

$$\bullet \quad R_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \left/ \begin{array}{c} \mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to e^+e^-)) \\ \hline \mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-)) \end{array} \right. \\ \bullet \quad \text{expectation}$$

- $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)$ in agreement with JHEP 04 (2017) 142
- $\mathcal{B}(B^0 \to K^{*0}\gamma)$ compatible with expectations
- If corrections to simulation are not accounted for, the ratio of the efficiencies (and thus R_{K^*}) changes by less than 5%

Areminder: Rk

• LHCb published an analysis of $R_{\rm K}$ based on Run 1 ($\int \mathcal{L} dt \sim 3 {
m fb}^{-1}$)

$$R_{\rm K}\left[q_{\rm min}^2, q_{\rm max}^2\right] = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \mathrm{d}q^2 \frac{\mathrm{d}\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\mathrm{d}q^2}}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \mathrm{d}q^2 \frac{\mathrm{d}\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\mathrm{d}q^2}}, \quad 1 < q^2 < 6 \,\mathrm{GeV}^2$$

• Also measured as a double ratio wrt $B^+ \to J/\psi (\to \ell^+ \ell^-) K^+$

$$R_{\rm K} = 0.745^{+0.090}_{-0.074} \, ({\rm stat}) \pm 0.036 \, ({\rm syst})$$

LHCb: PRL 113 (2014) 151601

BaBar: PRD 86 (2012) 032012 Belle: PRL 103 (2009) 171801

What happens next?

• Work very advanced on $R_{\rm K}$ update with additional Run 2 data (5 fb⁻¹ in total) with much improved sensitivity (rel. uncertainty reduced by ~40%)

• Run 2 update of R_{K*}

Can make analogous measurement with $R_{\phi}(B_s \to \phi \ell^+ \ell^-)$ and

other sımılar mo	des	Run	2		Book (in preparation) 2018-009 (in preparation)
Observable	Current LHC	ъ	LHCb 2025	Belle II	Upgrade II
EW Penguins					
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1	0.05	0.022	0.036	0.006
R_{K^*} $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1	0.06	0.029	0.032	0.008
R_{\star} , $R_{\pi K}$, R_{π}		0.	07. 0.04. 0.11		0.02, 0.01, 0.03

 ATLAS/CMS also getting more interested, e.g. CMS has in place a new trigger strategy wrt flavour with sizeable fraction of trigger bandwidth dedicated to flavour physics since beginning of this year

Another puzzling result in tree-level b → c transitions

LFU studies in $B \to D^{(*)} \tau \nu$ decays

- Different class of decays (tree-level charged current with V_{cb} suppression)
- Not at all rare: $\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) \sim 1\%$, problem is the background
- Lepton-universality ratio R(D*) : $R(D^*) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} \mu \nu_{\tau})}$
 - sensitive to any NP model coupling preferentially to third generation leptons
- Predicted theoretically at ~1%, e.g.
 [R(D*) ~4%, according to Bigi et al, arXiv:1707.09509]

$$R(D)_{SM} = 0.299 \pm 0.003$$

 $R(D^*)_{SM} = 0.227 \pm 0.003$

Berlochner et al arXiv:1703.05330

Experimental challenges

- At least two neutrinos in the final state (three if using $au o \mu
 u
 u$)
- At the LHC, as opposed to B factories, the rest of the event does not provide any useful kinematic constraint. However, profit from large boost and huge B production
- Latest LHCb measurement:

$$\begin{cases} \tau^{+} & \rightarrow \pi^{+}\pi^{-}\pi^{+}(\pi^{0})\bar{\nu}_{\tau} \\ D^{*-} & \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})\pi^{-} \end{cases}$$

Three-prong mode used for the first time!

- A semileptonic decay with no (charged) lepton in final state (one K, five π) \rightarrow Zero background from $B^0 \rightarrow D^{*-} \mu^+ \nu_\mu X$
- However, signal to noise ratio less than 1% → need at least 10³ rejection!
- Large background, notably from $B\to D^{*-}3\pi X$ (BF~100 x signal) and $B\to D^{*-}D_{\rm s}^+(X)$ (BF~10 x signal, same vertex topology)

Background reduction

• Separation between B and 3π vertices ($\Delta z > 4\sigma_{\Delta z}$) crucial to obtain the required rejection of $B \to D^* 3\pi X$

- Remaining double-charm background (D*D_(s)X) suppressed by employing a multivariate classifier
- Signal normalised to $B \to D^{*-}3\pi$ to minimize experimental systematics

PRL120 (2018) 171802 PRD 97 (2018) 072013

$$R(D^{*-}) = 0.291 \pm 0.019 \text{ (stat)} \pm 0.026 \text{ (syst)} \pm 0.013 \text{ (ext)}$$
 ~1.1 σ > SM

R(D) vs $R(D^*)$

LHCb Prospects

- Extend to full Run2 statistics
 - from ~1300 to ~6000 events
 - goal is to be competitive with world average
- A whole programme of semi-tauonic measurements, e.g.

fit to
$$R(D) \& R(D^*)$$

 $R(D_{\rm s}^{(*)}) : B_{\rm s}^0 \to D_{\rm s}^{(*)} \tau^+ \nu_{\tau}$
 $R(\Lambda_{\rm b}) : \Lambda_{\rm b} \to \Lambda_{\rm c}^{(*)} \tau^+ \nu_{\tau}$

Waiting for Belle II

~1.5% projected sensitivity on R(D*) with 5 ab-1

- All experiments see an excess wrt SM predictions
- Tension at ~3.8 σ level (according to Bigi et al, arXiv:1707.09509) INTRIGUING!
- ~20% effect on R(D*)

Testing LFU with B_c decays

• Generalization of R(D*) to B_c:

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)}$$

- Signal reconstructed using $\tau \rightarrow \mu \nu \nu$, $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu$ as normalisation
- Largest background from light b hadrons to J/ψ with a π or K misidentified as μ

PRL120 (2018) 121801

$$R(J/\psi) = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst})$$

Higher by 2σ than SM prediction (0.25-0.28)

Intriguing set of results in differential branching fractions for b → sμμ transitions

- In general, data tend to be lower than theory predictions at low q²
- Comparison limited by theoretical knowledge of form factors

Possible explanations of the anomalies

- Statistical fluctuations: unlikely given the number and pattern of the effects?
- Experimental artefacts: these are difficult measurements; have the systematic errors been correctly estimated?
- Theoretical uncertainties: large theoretical uncertainties from hadronic form factors on but LFU tests should be robust?
- A cocktail of the above?
- New Physics once all the above have been excluded...
- Many NP models proposed (leptoquarks,...), see for example: "B-physics anomalies: a guide to combined explanations" D. Buttazzo et al., JHEP 1711 (2017) 044, arXiv:1706.07808
 - "the case of an SU(2)_L-singlet vector leptoquark emerges as a particularly simple and successful framework."
- The large amount of data still to be analysed by LHCb and high-p_T LHC experiments, as well as from future Belle II, will certainly shed more light on the origin of the B-physics anomalies

39

New results on Ξ_{cc}^{++} [ccu]

- Observed for the first time in the decay $\Xi_c^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ but lifetime left for later studies PRL 119 (2017) 112001
- Now measured relative to $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^- \pi^+$ [1.7 fb⁻¹ in Run 2], consistent with expectations from weak decay PRL 121 (2018) 052002

$$\tau(\Xi_{cc}^{++}) = 0.256_{-0.022}^{+0.024} \pm 0.014 \,\mathrm{ps}$$

• Recently re-observed in $\Xi_{cc}^{++} \to \Xi_{cc}^{+} \pi^{+-}$ [1.7 fb⁻¹ in Run 2]

• Combined mass:

arXiv:1707.01919

$$m(\Xi_{cc}^{++}) = 3621.24 \pm 0.65 \text{ (stat)} \pm 0.31 \text{ (syst) MeV}/c^2$$

Ω⁰ lifetime

- Least well measured charmed baryon lifetime
- ~1000 decays $\Omega_b^- \to \Omega_c^0 \mu^- \bar{\nu}_\mu X,~\Omega_c^0 \to p K^- K^- \pi^+$
- Measured relative to $D^+ \to K^- \pi^+ \pi^+$ with D^+ from semileptonic B

 $\tau(\Omega_{\rm c}^0) = 268 \pm 24 \, ({\rm stat}) \pm 10 \, ({\rm syst}) \pm 2 ({\rm D}^+) \, {\rm fs}$

Ω⁰ lifetime

- Least well measured charmed baryon lifetime
- ~1000 decays $\Omega_b^- \to \Omega_c^0 \mu^- \bar{\nu}_\mu X,~\Omega_c^0 \to p K^- K^- \pi^+$
- Mea ~ four times larger than, and inconsistent with, the current world-average value of 69 ± 12 fs

arXiv:1807.02024

$$\tau(\Omega_{\rm c}^0) = 268 \pm 24 \, ({\rm stat}) \pm 10 \, ({\rm syst}) \pm 2 ({\rm D}^+) \, {\rm fs}$$

Observation of a new Ξ_b^- resonance

- In the quark model, radially and orbitally excited $\;\Xi_b^-\;$ resonances are expected [b,d,s]
- First observation of a new state decaying into $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$ in both fully hadronic (Λ_b) and semileptonic (Λ_b , Ξ_b) decays
- Mass and width from fully hadronic channel (no J^P analysis yet)

$$m_{\Xi_b(6227)^-} = 6226.9 \pm 2.0(\text{stat}) \pm 0.3(\text{syst}) \pm 0.2(\Lambda_b^0) \,\text{MeV/c}^2$$

 $\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4(\text{stat}) \pm 1.8(\text{syst}) \,\text{MeV/c}^2$

"Fixed-target like" geometry very well suited for. . . fixed-target physics!

With SMOG (System for Measuring
 Overlap with Gas) a small amount of
 noble gas is injected in beam pipe
 around (~ ±20 m) the collision region

Turns LHCb into a fixed-target experiment!

- Possible targets:
 He, Ne, Ar,...
- Gas pressure ~10-7mb,
 ~2 orders of magnitude
 larger than vacuum pressure
 (only local temporary degradation of LHC vacuum)

Link with cosmic ray physics

- Cosmic-ray flux of antiprotons is measured with high precision by AMS-02 and PAMELA
- Its interpretation requires a correct description of the dominant production process for antiprotons, i.e. the interaction of cosmic-ray protons with the interstellar medium (H, He)

- LHCb performed first measurement of cross-section for $p+He \to \overline{p}+X$ at $\sqrt{s_{\rm NN}} \sim 100\,{\rm GeV}$
- Results cover $12 0.4\,\mathrm{GeV}/c$
- Precision well below the spread among models for \overline{p} production

Conclusions

- Lots of measurements from LHCb in flavour and beyond, only a few of which were highlighted here, e.g. nothing on charm (covered by Mike Sokoloff), heavy ions, EW, exotic searches...
- Dramatic improvements to the already impressive knowledge accumulated by the B-factories and Tevatron. Healthy competition from Belle II, ATLAS & CMS very welcome!
- Precise measurements of flavour observables provide a powerful way to probe for NP effects beyond the SM, complementing direct searches for NP
- Most of these results show good compatibility with the SM, but some signs of tension are emerging
- Need more data to test these hints. These data are arriving in Run 2!
- Working hard to prepare for the future: getting ready to instal the LHCb upgraded detector in '19-20 and also thinking about a possible Upgrade II for the the ultimate exploitation of the LHC for flavour physics in the HL-LHC era

A few extra slides

Projected sensitivities

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [273]	0.025	0.036	0.007	
R_{K^*} $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [272]	0.031	0.032	0.008	
$R_{\phi},\ R_{pK},\ R_{\pi}$		0.08, 0.06, 0.18		0.02, 0.02, 0.05	
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}$ ° [134] $\binom{+5.0}{-5.8}$ ° [163]	4°		1°	
γ, all modes	$\binom{+5.0}{-5.8}^{\circ}$ [163]	1.5°	1.5°	0.35°	
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [601]	0.011	0.005	0.003	
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad [42]	$14 \mathrm{\ mrad}$		4 mrad	22 mrad [602]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [47]	35 mrad		9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	150 mrad [603]	$60 \mathrm{\ mrad}$		17 mrad	Under study [604]
a_{sl}^s	33×10^{-4} [208]	10×10^{-4}		3×10^{-4}	
$ V_{ub} / V_{cb} $	6% [198]	3%	1%	1%	
$B_s^0, B^0 \rightarrow \mu^+ \mu^-$					
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	90% [262]	34%		10%	21% [605]
$\tau_{B_s^0 \to \mu^+ \mu^-}$	22% [262]	8%		2%	
$S_{\mu\mu}$				0.2	
$b \rightarrow c \ell^- \bar{\nu_l} \; { m LUV \; studies}$					
$R(D^*)$	9% [213, 218]	3%	2%	1%	
$R(J/\psi)$	25% [218]	8%		2%	
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [606]	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [238]	4.3×10^{-5}	3.5×10^{-5}	1.0×10^{-5}	
$x \sin \phi$ from $D^0 \to K^+ \pi^-$	13×10^{-4} [226]	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	
$x\sin\phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)~1.2\times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	

A very challenging measurement

• Due to bremsstrahlung the reconstructed B mass is shifted towards lower values and events leak into the central-q² bins

Results R(D*)

New world average:

$$R(D^{*-}) = 0.304 \pm 0.013 \text{ (stat)} \pm 0.007 \text{ (syst)}$$

One of the milestones of flavour programme $B_{(s)} \to \mu^+ \mu^-$

- Very suppressed in the SM
 - Loop, CKM ($|V_{ts}|^2$ for $B_{\rm s}$) and helicity $\sim \left(\frac{m_{\mu}}{M_{\rm B}}\right)^2$

Theoretically "clean" → precisely predicted

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$
 (~6%)
 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

Bobeth et al. PRL 112 (2014) 101801

- Sensitive to NP
 - A large class of NP theories, such as SUSY, predict significantly higher values for the $B_{(s)}$ decay probability
- Very clean experimental signature
 - Studied by all high-energy hadron collider experiments

Era of precision measurements

of
$$B_{(s)} \rightarrow \mu^+ \mu^-$$

LHCb update with Run 2 data

- LHCb analysis based on Run 1 and Run 2 data (3+1.4 fb⁻¹)
- First observation from a single experiment with a significance of 7.8 σ

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6_{-0.2}^{+0.3}) \times 10^{-9} \quad (20\%)$$
 $\mathcal{B}_{SM} = (3.65 \pm 0.23) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ at } 95\% \text{ CL}$

Consistent with SM expectation at current level of precision

$B_{(s)} \to \mu^+ \mu^-$ projections

CMS PAS FTR-14-015

CIVIC I / (C) I I I I I T C I C				$\mathcal{S} = \mathcal{B}(B^0 \to \mu^+ \mu^-)$		
	\mathcal{L} (fb ⁻¹)	$N(\mathbf{B}_s^0)$	$N(\mathbf{B}^0)$	$\mathcal{B}_S^0 \to \mu^+\mu^-$	LHCb (23/300 fb-	
	20	18.2	2.2	> 100%		
	100	159	19	66%		
	300	478	57	43%	~34 %	
	300 (barrel)	346	42	50%	~34 /0	
	3000 (barrel)	2250	271	21%	~10%	
	, , , , , , , , , , , , , , , , , , ,					

LHCb: Physics case for an LHCb Upgrade II (in preparation)

~8 %

~2 %

$$B_{\mathrm{s,d}} \rightarrow \tau^+ \tau^-$$

• In the SM, larger BF due to larger au mass $(m_{ au}^2/M_{
m B}^2)$

$$\mathcal{B}(B_s^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$$

 $\mathcal{B}(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$

Bobeth et al. PRL 112 (2014) 101801

- Experimentally challenging due to undetected neutrinos in final state
- Searched by LHCb through the decay $\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$
- $B_{s,d}$ unresolvable in mass \rightarrow analysis optimised for B_s
- Exploit intermediate $\rho(770)^0$ resonance to define signal/control regions of $m_{\pi^-\pi^+}$, then fit MVA
- Limits set:

PRL 118 (2017) 251802

$$\mathcal{B}(B_{\rm s} \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ at } 95\% \text{ C.L.}$$

$$\mathcal{B}(B_{\rm d} \to \tau^+ \tau^-) < 2.1 \times 10^{-3} \text{ at } 95\% \text{ C.L.}$$

- first direct limit
- → best limit

Another interesting rare decay: $B^0 \to K^{*0} (\to K^+\pi^-) \mu^+\mu^-$

- A b →s transition that can only proceed via loop diagrams

- Four final state particles with rich phenomenology, plethora of observables, which can be built from the measured amplitudes
- Rates, angular distributions and asymmetries sensitive to NP
- A lot of phenomenological work invested in defining observables with "clean" theoretical predictions.
 - Observables form-factor free at leading order
 - Still susceptible to non-factorisable corrections

• Question: how clean?

The curious case of P₅'

• One such observable is so-called P'₅, not intuitive, but constructed from angular observables to be robust from 'form-factor uncertainties'

LHCb: JHEP 02 (2016) 104 Belle: PRL 118 (2017) 111801 ATLAS: arXiv:1805.04000 CMS-PAS-BPH-15-008

• Is the SM prediction less precise than what is claimed?

Fit to the invariant masses

JHEP 08 (2017) 055

 Precision of measurement driven by statistics of electron sample: ~90 and 110 signal candidates in low-q² and central-q², muon sample 3-5 times larger