Mixing and CP-Violation in Charm at LHCb

Michael D. Sokoloff

University of Cincinnati & Laboratoire de Physique Nucléaire et de Hautes Energies IN2P3 – CNRS, Sorbonne Université et Université Denis Diderot on behalf of the LHCb Collaboration

September 11, 2018

Michael D. Sokoloff LISHEP-2018

Why Study Charm Mixing and CPV

What should you remember tomorrow, or a year from now?

- Flavor physics, generically, allows searches for manifestations of New Physics at the highest energy scales by studying rare and forbidden decays and and searching for CP violation beyond that described by the Kobayashi-Maskawa phase of the CKM matrix.
 - CP violation in D⁰, K⁰, B_d and B_s mixing provide complementary sensitivities to BSM physics;
 - We are collecting fully reconstructed charm samples 100× to 1000× larger than previous experiments, and expect to collect another 10× to 50× more in Run 3;
 - We are already probing mass scales higher than can be searched for directly at the LHC.
- Direct CPV may provide complementary insights related to new amplitudes. SM predictions are notoriously variable; observations at the edge of our sensitivities might (or might not) signal BSM physics. In any case, these measurements will anchor our understanding of CPV in the interference of suppressed and mixing amplitudes.

Michael D. Sokoloff LISHEP-2018

Flavor Constrains BSM Physics

Operator	Bounds on Λ in TeV ($c_{NP} = 1$)		Bounds on c_{NP} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	A
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^{\mu} u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	Amp: la/nlp dp
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	Δm_D , $ q/p _D$, φ_D
$(\bar{b}_L \gamma^\mu d_L)^2$	6.6×10^{2}	9.3×10^{2}	2.3×10^{-6}	1.1×10^{-6}	Δm_{-} : $\sin(2\beta)$ from $B_{+} \rightarrow \psi K$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^{3}	3.6×10^{3}	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}, \ \sin(2\beta) \ \operatorname{from} \ D_d \to \psi R$
$(b_L \gamma^\mu s_L)^2$	1.4×10^{2}	2.5×10^{2}	5.0×10^{-5}	1.7×10^{-5}	Amp ; $\sin(\phi)$ from $B \rightarrow ih\phi$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^{2}	8.3×10^{2}	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}, \sin(\phi_s) \operatorname{nom} B_s \to \psi \psi$

Flavor Structure in the SM and Beyond

Generic bounds without a flavor symmetry

$$\Delta \mathcal{L}^{\Delta F=2} = \sum_{i \neq j} rac{c_{ij}}{\Lambda^2} (\overline{Q}_{Li} \gamma^\mu Q_{Lj})^2 \; ,$$

- Table above from Isidori and Teubert, Eur.Phys.J.Plus **129**, 40 (2014).
 Bounds on representative dimension-six ΔF = 2 operators.
- Image to the left from M. Neubert, EPS-HEP-2011.

Direct CP Violation

adapted from Khodjamirian and Petrov, PLB 774 (2017) 235 - 242

Observables sensitive to *CP*-violation are most often written in terms of asymmetries $a_{\rm CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})},$ (1)

formed from the partial rates of a *D*-meson decay to a final state *f* and of its CP-conjugated counterpart. ... the asymmetry in Eq. (1) could be a function of time, if $D^0\overline{D}^0$ -mixing is taken into account. The messured time-integrated asymmetry contains a *direct* component, [which] occurs when the absolute values of the $D \rightarrow f$ decay amplitude, which we denote by $A_f \equiv A(D \rightarrow f)$, and of the corresponding CP-conjugated amplitude $\overline{A_f} \equiv A(\overline{D} \rightarrow \overline{f})$ are different. This can be realized if the decay amplitude A_f can be separated into at least two different parts,

$$A_f = A_f^{(1)} e^{i\delta_1} e^{i\phi_1} + A_f^{(2)} e^{i\delta_2} e^{i\phi_2},$$
(2)

where $\phi_1 \neq \phi_2$ are the weak phases (odd under *CP*), and $\delta_1 \neq \delta_2$ are the strong phases (even under *CP*). The CP-violating asymmetry is then given by

$$a_{\rm CP}^{\rm dir}(f) \propto rac{A_f^{(1)}}{A_f^{(2)}} \, \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2).$$
 (3)

The amplitude pattern of Eq. (2) naturally emerges in SCS nonleptonic decays such as $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$. [as penguin amplitudes augment tree amplitudes]

Michael D. Sokoloff LISHEP-2018

University of Cincinnati & LPHNE

Tree Amplitudes and Penguin Amplitudes

Strong and Weak Phases

Michael D. Sokoloff LISHEP-2018

University of Cincinnati & LPHNE

Neutral Meson Oscillation and CP Violation in Mixing

for x, y ≪ 1 (valid for D⁰, not for B_s):
doubly Cabibbo-Suppressed (DCS) ≈ ∝ e^{-Γt};
pure mixing ∝ e^{-Γt} × (Γt)²
interference ≈ ∝ e^{-Γt} × Γt

Michael D. Sokoloff LISHEP-2018 Mixing and CP-Violation in Charm at LHCb

Time Evolution of $D^0 o K\pi$

Michael D. Sokoloff LISHEP-2018

University of Cincinnati & LPHNE

CPV in Mixing

$$\begin{split} \langle D^{0}|H|\overline{D^{0}} \rangle &= M_{12} - \frac{i}{2}\Gamma_{12}; \quad \langle \overline{D^{0}}|H|D^{0} \rangle = M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}, \\ \frac{q}{p} &= \frac{-2\left(M_{12}^{*} - \frac{1}{2}\Gamma_{12}^{*}\right)}{\Gamma\left(x - iy\right)}; \quad \lambda_{f} \equiv \frac{q}{p}\frac{\overline{A}_{f}}{A_{f}} = -\left|\frac{q}{p}\right|R_{f}e^{i\left(\phi + \Delta_{f}\right)} \quad \left(\rightarrow -\eta_{f}^{CP}\left|\frac{q}{p}\right|e^{i\phi}\right) \\ \left|\langle f|H\left|\overline{D}^{0}(t)\right\rangle\right|^{2} &\approx -\frac{e^{-\Gamma t}}{2}\left|\mathcal{A}_{f}\right|^{2}\left\{R_{D} + \left|\frac{p}{q}\right|\sqrt{R_{D}}\left[y\cos(\delta + \varphi) - x\sin(\delta + \varphi)\right](\Gamma t) + \\ &\left|\frac{p}{q}\right|^{2}\frac{x^{2} + y^{2}}{4}\left(\Gamma t\right)^{2}\right\} \end{split}$$

$$\left| \langle \bar{f} | H \left| D^{0}(t) \right\rangle \right|^{2} \approx \frac{e^{-\Gamma t}}{2} \left| \overline{\mathcal{A}}_{\bar{f}} \right|^{2} \left\{ \overline{R}_{D} + \left| \frac{q}{p} \right| \sqrt{\overline{R}_{D}} \left[y \cos(\delta - \varphi) - x \sin(\delta - \varphi) \right] (\Gamma t) + \left| \frac{q}{p} \right|^{2} \frac{x^{2} + y^{2}}{4} (\Gamma t)^{2} \right\}.$$

no direct CPV + x,
$$y \ll 1 \rightarrow \tan \varphi \approx \left(1 - \left|\frac{q}{\rho}\right|\right) \frac{x}{y} \quad \left[|M_{12}|, |\Gamma_{12}|, \arg\left(\frac{\Gamma_{12}}{M_{12}}\right) \rightarrow x, y, \left|\frac{q}{\rho}\right|, \arg\left(\frac{q}{\rho}\right)\right]$$

Michael D. Sokoloff LISHEP-2018

LHC Detector Acceptances for $b\overline{b}$ Production

- LHCb is a forward spectrometer, optimized for accepting both B and B hadrons in an event;
- accepts about 10× as many triggers as ATLAS or CMS;
- $\sigma(c \overline{c}) \sim 20 \times \sigma(b \overline{b});$
- acceptance in η complements ATLAS and CMS for many electro-weak studies.

LHCb Detector [2008 JINST 3 S08005]

Michael D. Sokoloff LISHEP-2018

Some Experimental Issues

The experimental observable is not directly A_{CP} , but A_{raw} :

 $A_{\rm raw} = A_{CP} + A_P + A_D + A_{\rm tag}$

- The production asymmetry A_P : pp collisions have an initial anti-quark deficit
- The detection asymmetry A_D : meson and anti-meson cross-sections differ
- The tagging asymmetry A_{tag} : efficiencies depend on charge of tagging particles
- The *CP* asymmetry A_{CP} : What we want to measure
- Detection asymmetry reduced by flipping magnet polarity regularly
- Residual detection asymmetry due to intrinsic different cross-section between particles of opposite charge when interacting with the detector's material

Michael D. Sokoloff LISHEP-2018

University of Cincinnati & LPHNE

Production and tagging asymmetries

At LHCb, we use 2 independent tagging methods :

Michael D. Sokoloff LISHEP-2018

Prior Measurements of Direct CPV

- Most precise measurements to date
 - Based on Run 1 data
 - Updated analyses with Run 2 data under way

$$\begin{split} &A_{CP}(D^0 \to K^+K^-) = (0.4 \pm 1.2 \pm 1.0) \times 10^{-3} & \text{[Phys. Lett. B 767 (2017), 177-187]} \\ &A_{CP}(D^0 \to \pi^+\pi^-) = (0.7 \pm 1.4 \pm 1.1) \times 10^{-3} & \text{[Phys. Lett. B 767 (2017), 177-187]} \\ &\Delta A_{CP}(D^0 \to h^+h^-) = (1.0 \pm 0.8 \pm 0.3) \times 10^{-3} & \text{[Phys. Rev. Lett. 116, 191601 (2016)]} \end{split}$$

- ΔA_{CP} measured first; then $A_{CP}(KK)$; then $A_{CP}(\pi\pi)$ extracted;
- systematic errors for ΔA_{CP} are smaller than for either channel alone;
- statistical errors are also smaller we had to use tighter cuts to extract the absolute $A_{CP}(KK)$.

$\rightarrow\,$ on to the latest results: direct CPV first, then time-dependent

Michael D. Sokoloff LISHEP-2018 Mixing and CP-Violation in Charm at LHCb

ΔA_{CP} in Λ_c^+ decays [JHEP 03 (2018) 182]

- Dataset : 3.0 fb⁻¹, Run 1
- Production mode : $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$
- Raw asymmetry :

$$egin{aligned} &A_{ ext{raw}}(f) = A_{C\!P}(f) + A_P(\Lambda_b^0) + A_{ ext{tag}}(\mu) + A_D(f) \ & ext{where } \mathsf{f} =
ho K^+ K^-, \
ho \pi^+ \pi^- \end{aligned}$$

 Removing experimental asymmetries by taking the difference between the two final states

$$egin{aligned} \Delta A_{C\!P} &= A_{
m raw}(pK^+K^-) - A_{
m raw}(p\pi^+\pi^-) \ &= A_{C\!P}(pK^+K^-) - A_{C\!P}(p\pi^+\pi^-) \end{aligned}$$

Assuming the kinematics is the same for the two final states

Michael D. Sokoloff LISHEP-2018

ΔA_{CP} in Λ_c^+ decays [JHEP 03 (2018) 182]

- The kinematics of the two final states are not the same
- $\rightarrow\,$ Reweight the kinematics of $p\pi^+\pi^-$ to pK^+K^-
 - Reweight with decision trees with gradient boosting (GBDT)
 - Reweight for Λ_c^+ transverse momentum and pseudorapidity and p transverse momentum
 - limited by statistics of pK^+K^- final state
 - Quote a weighted asymmetry:

$$\Delta A_{CP}^{\text{wgt}} = A_{\text{raw}}(pK^+K^-) - A_{\text{raw}}^{\text{wgt}}(p\pi^+\pi^-)$$

 Weight function published in order to compare with theoretical predictions

Michael D. Sokoloff LISHEP-2018

ΔA_{CP} in Λ_c^+ decays [JHEP 03 (2018) 182]

 $\Delta A_{C\!P}^{\rm wgt} = (3.0 \pm 9.1 \pm 6.1) \times 10^{-3}$

- First measurement of *CPV* parameters in 3-body Λ_c^+ decays.
- No CPV observed

Michael D. Sokoloff LISHEP-2018

CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ [Phys. Lett. B 769 (2017) 345-356]

- Dataset : 3.0 fb^{-1} , Run 1
- Production mode : $D^{*+} \rightarrow D^0 \pi^+$
- $N_{\rm sig} = (1008 \pm 1) \times 10^3$

- Ordering of the particles:
 - For the D^0 : $\pi_1 \pi_2 \pi_3 \pi_4 = \pi^+ \pi^- \pi^+ \pi^-$, where largest $m(\pi^+ \pi^-) = m(\pi_3 \pi_4)$

For the \overline{D}^0 : *CP* is applied $\pi_1 \pi_2 \pi_3 \pi_4 = \pi^- \pi^+ \pi^- \pi^+$

5D phase space:

$$m(\pi_1\pi_2), m(\pi_1\pi_4), m(\pi_2\pi_3), m(\pi_1\pi_2\pi_3), m(\pi_1\pi_2\pi_4)$$

Michael D. Sokoloff LISHEP-2018

University of Cincinnati & LPHNE

Triple Product Asymmetry Math

Parity reversing and parity preserving amplitudes interfere - producing parity violation

Michael D. Sokoloff LISHEP-2018

University of Cincinnati & LPHNE

CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ [Phys. Lett. B 769 (2017) 345-356]

The energy test [J. Stat. Comput. Simul. 75 (2005) 109]

- Sensitive to local CPV in the phase space
- Model independent unbinnned method
- Define a metric to compute the distance between 2 points in the phase space
- Define a test statistic, T

$$T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\overline{n}} \frac{\psi_{ij}}{\overline{n}(\overline{n}-1)} - \sum_{i,j}^{n,\overline{n}} \frac{\psi_{ij}}{n\overline{n}}$$

- Build the "no CPV " hypothesis as a set of random permutations of the data
- Compare the value in data to the "no CPV " hypothesis

This is the first application of the energy test to a 4-body decay

Michael D. Sokoloff LISHEP-2018

Mixing and CP-Violation in Charm at LHCb

18/32

$CPV \text{ in } D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^- : Results$ [Phys. Lett. B 769 (2017) 345-356]

- data are marginally consistent with CP symmetry hypothesis
- more data and full amplitude analysis may be able to observe direct CPV in this SCS decay

A_{CP} in $D^0 ightarrow K^0_{ m s} \overline{K^0_{ m s}}$ decays [arXiv:1806.01642]

Track and K_{s}^{0} categories

For this analysis:

- dataset: 2.0 fb⁻¹ 2015 2016
- production + tagging: prompt D^{*+}
- LL: the two K_s^0 decay in the VELO and both form long tracks
- LD: one K_{α}^{0} decays inside and one decays downstream of the VELO

Michael D. Sokoloff LISHEP-2018

Mixing and CP-Violation in Charm at LHCb

removing backgrounds

A_{CP} in $D^0 \rightarrow K^0_{ m s} K^0_{ m s}$ decays [arXiv:1806.01642]

- $A_{CP} = (4.2 \pm 3.4 \pm 1.0)\%$
- Compatible with Run 1 result: $A_{CP} = (-2.9 \pm 5.2 \pm 2.2)\%$
- Average : $A_{CP} = (2.0 \pm 2.9 \pm 1.0)\%$
- \rightarrow Catching up with Belle: $[A_{CP} = (-0.0 \pm 1.5 \pm 0.2)\%$ [PRL 119 (2017) 171801]

Michael D. Sokoloff LISHEP-2018

Mixing and CP-Violation in Charm at LHCb

21/32

Mixing + CPV: Context and History

The interpretation of experimental results often depends on prior knowledge and impact on underlying physics parameters.

These plots illustrate the status of charm mixing/CPV results compiled by the Heavy Flavor Averaging Group, circa April 2013 (before LHCb's first $K\pi$ mixing + CPV results were announced [PRL 111 (2013) 251801].

Michael D. Sokoloff LISHEP-2018

A_{Γ} with $D^0 \rightarrow hh$ decays Phys. Rev. Lett 118, 261803 (2017)

$$\begin{split} A_{CP}(h^+h^-;t) &\approx A_{CP}^{\mathrm{dir}}(h^+h^-) + A_{\Gamma}(h^+h^-) \left(\frac{t}{\tau}\right) + \left[< \mathcal{O}(10^{-6}) \left(\frac{t}{\tau}\right)^2 \right] \\ A_{CP}^{\mathrm{dir}}(h^+h^-) &\equiv A_{CP}(t=0) = \frac{\left|\mathcal{A}(D^0 \to h^+h^-)\right|^2 - \left|\mathcal{A}(\bar{D}^0 \to h^+h^-)\right|^2}{\left|\mathcal{A}(D^0 \to h^+h^-)\right|^2 + \left|\mathcal{A}(\bar{D}^0 \to h^+h^-)\right|^2}, \\ A_{\Gamma}(h^+h^-) &= \frac{\eta_{CP}}{2} \left[y \left(\left|\frac{q}{p}\right| - \left|\frac{p}{q}\right| \right) \cos\varphi - x \left(\left|\frac{q}{p}\right| + \left|\frac{p}{q}\right| \right) \sin\varphi \right], \end{split}$$

Dataset

- 9.0 M $D \rightarrow K^- K^+$ & 3.0 M $D \rightarrow \pi^- \pi^+$ from 3 fb⁻¹ of Run 1 data (collected 2011-2012)
- prompt $D^{*+} \rightarrow D^- \pi^+ + cc$
- cut on $m(K\pi)$; study Δm
- combinatorial background is sideband-subtracted
- asymetry is measured in decay time intervals spanning [0.6, 20] τ(D⁰).

A_{Γ} with $D^0 \rightarrow hh$ decays: Experimental Challenges Phys. Rev. Lett 118, 261803 (2017)

Instrumental Asymmetries

- Soft pion charge reconstruction asymmetry Time dependent correction due to correlation between soft pion kinematics and D⁰ decay time
- Reweighed the soft pion kinematic to recover left-right asymmetry of the detector Validated on D⁰→K·π+ decays

D⁰ from B decays (Secondaries)

- Undetected B decays mimic a larger D⁰ decay time Dilutes the asymmetry
- Applied requirement of the D⁰ pointing to PV Residual background from B decays estimated with a model calibrated by the yield of secondaries at higher decay time

Michael D. Sokoloff LISHEP-2018

A_{Γ} with $D^0 \rightarrow hh$ decays: Results Phys. Rev. Lett 118, 261803 (2017) + JHEP 04 (2015) 043

The data are consistent with hypothesis that *CP* symmetry is exact (in this measurement) at the level of 3×10^{-4} .

- $A_{\Gamma}(KK) = (-3.0 \pm 3.2 \pm 1.0) \times 10^{-4}$
- $A_{\Gamma}(\pi\pi) = (-4.6 \pm 5.8 \pm 1.2) \times 10^{-4}$

A complementary analysis of the same data using per-event acceptance calculations produces compatible results.

Combining these results with those from a statistically independent sample $(B \rightarrow D^0 \mu^- X)$

•
$$A_{\Gamma} = (-2.9 \pm 2.8) \times 10^{-4}$$

Michael D. Sokoloff LISHEP-2018

$D^0 \rightarrow K\pi$ Samples: Prompt and Doubly-Tagged (DT)

- prompt signal trigger becomes "fully" efficient well above one lifetime;
- doubly-tagged trigger is

 independent of D⁰
 decay time;

Michael D. Sokoloff LISHEP-2018

$D^0 \rightarrow K\pi$ Mixing and CPV Measurements

$D^0 \rightarrow K\pi$ Mixing and CPV Measurements

Impact: Run 1 $K\pi$ Mixing + CPV Measurement [PRL 111 (2013) 251801]

Michael D. Sokoloff LISHEP-2018 Mixing and CP-Violation in Charm at LHCb

$D^0 \rightarrow K\pi$ Mixing and CPV Measurements – 2018 Update

Impact: 5 fb⁻¹ $K\pi$ Mixing + CPV Measurement [PRD 97 (2018) 031101]

Michael D. Sokoloff LISHEP-2018

To Take Away

- We are measuring direct CPV in charm decays with sensitivities in the range $10^{-3} 10^{-2}$. Standard Model predictions are in the range $10^{-4} 10^{-3}$.
- We are measuring the particle antiparticle differences in mixing rates (CPV in mixing) in $D^0 \rightarrow K\pi$ at the few percent level.
- The super-weak constraint (that all CPV in mixing originates in $|M_{12}|$, $|\Gamma_{12}|$, and $\arg(\Gamma_{12}/M_{12})$ dramatically reduces the uncertainties on both |q/p| and $\arg(q/p)$. This constraint should apply for mixing with CF and DCS final states.
- The limits from these measurements constrain BSM physics at high mass scales and complement the limits from direct searches.
- We anticipate $> 4 \times$ as much reconstructed charm in Run 2 as in Run 1, and another $10 \times -50 \times$ as much in Run 3.
- Flavor physics is fun.