

NA62 Ultra-rare decay, results and perspectives

Antonella Antonelli, INFN LNF For the NA62 collaboration

LISHEP 2018

September 12th, Salvador de Baia - Brasil

Outline

- > Aim and strategy for the BR(K⁺ $\rightarrow \pi^+ \nu \nu$) measurement
- Results with 2016 data
- > Broader physics program: exotics searches at NA62
- Prospects

SM theoretical framework

The $K^+ \rightarrow \pi^+ vv$ decay is extremely suppressed Flavor-changing neutral current quark transition $s \rightarrow dvv$.

Forbidden at tree level, dominated by short-distance dynamics (GIM mechanism)

Is characterized by a theoretical cleanness in the SM prediction of the BR(K⁺ $\rightarrow \pi^+ \nu \nu$): loops and radiative corrections are under control.

Highly suppressed & Very well predicted Excellent laboratory complementary to LHC

Stringent test of the SM and possible evidence for New Physics

New Physics from $K \rightarrow \pi \nu \nu$ decays

- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP 1511 (2015) 166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, EPJ C76 (2016) no.4 182]
- **Custodial Randall-Sundrum** [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM non-MFV [Tanimoto, Yamamoto, PTEP 2016 (2016) no.12, 123B02; Blazek, Matak, IntlJModPhys.A 29 (2014), 1450162; Isidori et al. JHEP 0608 (2006) 064]
- LFU violation models [Isidori et. al., Eur. Phys. J. C (2017) 77]
- Constraints from existing measurements (correlations model dependent)

Connection with Flavor Physics

Measurement of BR of charged $(K^+ \rightarrow \pi^+ \nu \nu)$ and neutral $(K_L \rightarrow \pi^0 \nu \nu)$ modes can determine the **unitarity triangle** independently from B inputs

Example of CKM constraints:

- BR($K^+ \rightarrow \pi^+ \nu \nu$) to ±10%
- BR($K_L \rightarrow \pi^0 \nu \nu$) to 15%

 $\delta(BR)/BR = 10\%$ would lead to $\delta(|V_{td}|)/|V_{td}| = 7\%$

Past measurement and prediction

Current theoretical prediction:

BR(K⁺ $\rightarrow \pi^+ \nu \nu$)_{SM} = (8.4 ± 1.0) x 10⁻¹¹

BR(K_L $\rightarrow \pi^0 \nu \nu$)_{SM} = (3.4 ± 0.6) x 10⁻¹¹

A.J. Buras, D.Buttazzo, J. Girrbach-Noe and R.Knegjens arXiv:1503.02693

• Main contribution to the errors comes from the uncertainties on the SM input parameters

Experimental status:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

Only measurement obtained by E787 and E949 experiments at BNL with **stopped** kaon decays (7 candidates)

• Gap between theoretical precision and large experimental error motivates a strong experimental effort. **Significant new constraints can be obtained.**

Neutral decay $K_L \rightarrow \pi^0 vv$ has never been measured

NA62 GOAL: measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with 10% accuracy O(100) SM events + control of systematics at % level

Kaon at CERN SPS

The **CERN-SPS secondary beam line** already used for the NA48 experiment

can deliver the required K⁺ intensity

In the North Area the SPS extraction line is providing a secondary charged hadron beam

- 400 GeV/c primary proton beam
- 3 x 10¹² protons/pulse
- 40 cm beryllium target
- **75 GeV/c** unseparated hadrons
 beam: π⁺ (70%), K⁺ (6%), protons
 (24%) (Δp/p ± 1%)
- 100 mrad divergence (RMS)
- 60x30 mm² transverse size
- Intensity: 750 MHz (45 MHz K⁺)
- 4.8 x 10¹² K⁺ decays/year

NA62 Experiment

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver (UBC)

NA62 Goal

Design criteria: kaon intensity, signal acceptance, background suppression

Kaons with high momentum. Decay in flight technique.

Signal signature: K^+ track + π^+ track

Backgrounds

Decay	BR	Main Rejection Tools
$K^+ o \mu^+ \nu_\mu(\gamma)$	63%	μ -ID + kinematics
$K^+ o \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinematics
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	6%	multi-track + kinematics
$K^+ ightarrow \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinematics
$K^+ \to \pi^0 e^+ \nu_e$	5%	$e\text{-ID} + \gamma\text{-veto}$
$K^+ o \pi^0 \mu^+ u_\mu$	3%	μ -ID + γ -veto

Key features

- O(100 ps) Timing between sub-detectors
- O(10⁴) Background suppression from kinematics
- O(10⁷) μ -suppression (K⁺ $\rightarrow \mu^+ \nu$)
- O(10⁷) γ -suppression (from K⁺ $\rightarrow \pi^{+}\pi^{0}, \pi^{0}\rightarrow \gamma\gamma$)

Analysis Strategy

Most discriminating variable: $m_{miss}^2 = (P_{K+} - P_{\pi+})^2$

Where the daughter charged particle is assumed to be a pion

Theoretical m²_{miss} distribution for signal and backgrounds of the main K⁺ decay modes: (signal is multiplied by a factor 10¹⁰).

2 signal regions, on each side of the $K^+ \rightarrow \pi^+ \pi^0$ peak (to eliminate 92% of the K^+ width)

Main background sources:

- $K^+ \to \pi^+ \pi^0$, $K^+ \to \mu^+ \nu$ non gaussian resolution and radiative tails
- $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ non gaussian resolution tails
- decays with neutrino in final state

NA62 Timescale

2016: 40% of nominal intensity: 13 x 10¹¹ proton on target $\sim 1 \times 10^{11}$ K⁺ decays useful for $\pi \nu \nu$ **2017:** 60% of nominal intensity: 20 x 10¹¹ proton on target $> 3 \times 10^{12}$ K⁺ decays collected

2018 data taking started in the same conditions of 2017 with optimized data quality monitoring

NA62: Beam ID & Tracking

Beam ID & Tracking

- **KTAG:** Differential Čerenkov counter. **σ**t **~70 ps, efficiency > 99%.**
- **GTK:** GigaTracKer Spectrometer. $\sigma_t \sim 100 \text{ ps}, \sigma_{dx,dy} \approx 0.016 \text{ mrad}, \Delta P/P < 0.4\%$.

NA62: Secondary ID & Tracking

Beam ID & Tracking

- **KTAG:** Differential Čerenkov counter. **σ**t **~70 ps, efficiency > 99%.**
- **GTK:** GigaTracKer Spectrometer. $\sigma_t \sim 100 \text{ ps}, \sigma_{dx,dy} \approx 0.016 \text{ mrad}, \Delta P/P < 0.4\%$.

Secondary particle ID & Tracking

STRAW:Spectrometer with STRAW tubes. σt ~ 6 ns, σdx,dy ~130 μm,σp/p~(0.300+0.005p)% (GeV/c)

RICH: Ring Imaging Cherenkov detector. μ/π separation ~ 10⁻², σ_t of a ring < 100 ps.

NA62: Muon Veto System

Beam ID & Tracking

- **KTAG:** Differential Čerenkov counter. σt ~70 ps, efficiency > 99%.
- **GTK:** GigaTracKer Spectrometer. $\sigma_t \sim 100 \text{ ps}, \sigma_{dx,dy} \approx 0.016 \text{ mrad}, \Delta P/P < 0.4\%$.

Secondary particle ID & Tracking

- **STRAW:** Spectrometer with STRAW tubes. σ_t ~ 6 ns, σ_{dx,dy} ~130 μm. σp/p~(0.300+0.005p)% (GeV/c)
- **RICH:** Ring Imaging Cherenkov detector. μ/π separation ~ 10⁻², σ_t of a ring < 100 ps.
- **Muon Veto**
- MUV3: Scintillator hodoscope. σt ~500 ps, efficiency ~99.5%.

MUV1/2: Hadronic calorimeters for the μ/π separation. Cluster reco at ~20 ns from T_{track}.

NA62: Photon Veto System

Photon Veto

- LKr: NA48 LKr Calorimeter ($1 < \theta \gamma < 8.5 \text{ mrad}$) also for PID. σ_t~500 ps (E > 3 GeV), σ_t~1 ns (hadronic and MIP clusters), σ_{dx,dy}~1 mm
- **LAV:** Large Angle Veto. 12 stations (8.5 $<\theta\gamma$ <50 mrad). 4 or 5 rings of lead glass crystals read out by PMTs. $\sigma_t \sim 1 \text{ ns}, 10^{-3} \text{ to } 10^{-5} \text{ inefficiency (down to 150 MeV).}$
- IRC/SAC: Inner Ring Calorimeter and Small Angle Calorimeter (θγ <1 mrad). Shashlik calorimeters. Lead and plastic scintillator plates. σt < 1 ns, 10⁻⁴ inefficiency.

2016 Data

First data declared good for $\pi\nu\nu$. 4 weeks of data taking. ~55000 good spills

- Bad data based on detector performances identified on spill by spill basis
- Signal selection tuned on MC, 10% PNN data, control data
- The analysis is mostly cut based

Blind analysis procedure: signal and control regions masked throughout the analysis

Kinematic selection of signal regions

Photon rejection

Events are rejected in case of coincidence between decay time and signals (\pm 3-5 ns) in the LKr, LAV, SAC, IRC or hodoscope not associated to the π^+

The expected rejection is obtained with an estimate based on single-photon efficiencies

Fraction of surviving $K^+ \rightarrow \pi^+ \pi^0$ (15 – 35 GeV momentum range) : ~2.5 \cdot 10⁻⁸

π^+ Particle identification

in Calorimeters

- Electromagnetic calo (LKr),
- Hadronic calo (MUV1,2)
- Scintillator pads (MUV3)

MUV3+BDT classifier using: energy, energy sharing, clusters shape

0.6 · 10⁻⁵ μ^+ efficiency vs 77% π^+ efficiency

in RICH

Track driven Likelihood particle ID discriminant

Particle mass using track momentum Momentum measurement under mass hypothesis (velocity - spectrometer)

2.5 · 10⁻³ μ^+ efficiency vs 75% π^+ efficiency

Data after selection

Single Event Sensitivity (SES)

the γ and multiplicity cuts)

Number of K^+ decays	$N_K = (1.21 \pm 0.02) \times 10^{10}$	
Acceptance $K^+ \to \pi^+ \nu \bar{\nu}$	$A_{\pi\nu\nu} = 4.0 \pm 0.1$	
PNN trigger efficiency	$\epsilon_{trig} = 0.87 \pm 0.2$	
Random Veto	$\epsilon_{RV} = 0.76 \pm 0.04$	
SES	$(3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \cdot 10^{-10}$	
Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$ -	Error on the

Background estimation

- Fraction of background events entering signal regions through the
- reconstructed tails of the corresponding $m^2_{\mbox{\scriptsize miss}}$ peak
- is modeled on control samples selected on data and eventually corrected for biases induced by selection criteria using MC simulation

Calculated for the main background decays :

 $K^+ \rightarrow \pi^+ \pi^0(\gamma), K^+ \rightarrow \mu^+ \nu(\gamma), K^+ \rightarrow \pi^+ \pi^-, K^+ \rightarrow \pi^+ \pi^- e^+ \nu$

under the assumption that particle identification, γ and multiplicity rejection are independent from the cuts on m²_{miss}

Background estimation

K⁺→ $\pi^+\pi^0(\gamma)$ background

	$\pi^+\pi^0$	$\pi^+\pi^0(\gamma)$
R1	$0.022 \pm 0.004_{stat} \pm 0.002_{syst}$	0
R2	$0.037 \pm 0.006_{stat} \pm 0.003_{syst}$	$0.005 \pm 0.005_{syst}$

Control region validation: 1 event observed (1.5 expected)

$K^+ \rightarrow \mu^+ \nu(\gamma)$ background

	$\mu^+ u$
R1	$0.019 \pm 0.003_{stat} \pm 0.003_{syst}$
R2	$0.0012 \pm 0.0002_{stat} \pm 0.0006_{syst}$

Expected $K^+ \rightarrow \mu^+ \nu(\gamma)$ background in P_{π^+} bins compared to the expected number of SM $K^+ \rightarrow \pi^+ \nu \nu$ events

The background depends on P_{π+} as both tails and particle ID steeply increase at higher momentum because of kinematics and RICH performances

Control region validation: 2 events observed (1.1 expected)

$K^+ \rightarrow \pi^+ \pi^+ \pi^-$ background

- Data control sample of $K^+ \rightarrow \pi^+ \pi^- \pi^-$ selected tagging $\pi^+ \pi^-$ pair
- MC sample of $K^+ \rightarrow \pi^+\pi^+\pi^-$ selected as in data

Multiplicity rejection and kinematics cuts turn out to be very effective against $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ decays (one order of magnitude lower than the other two)

$$f^{kin}(R2) \le 10^{-4}$$

 Kinematic rejection factor corrected for biases induced by the control sample selection using MC

$$N_{\pi\pi\pi}^{expected} = 0.002 \pm 0.001_{stat} \pm 0.002_{syst}$$

Upstream background

 $\pi \nu \nu$ -like data sample enriched for upstream events: position of π^+ at the entrance of the decay region

The position of the π^+ indicates their origin upstream or via interactions in GTK stations and drive the choice of a **geometrical cut covering the central aperture of the dipole**

 $|X_{track}| > 100$ mm, $|Y_{track}| > 500$ mm

- π⁺ from a decay upstream of the decay region matching a π⁺ from the beam
- π⁺ from beam particle interactions in GTK matching a K⁺
- π⁺ from interaction of a K⁺ with material in the beam (prompt particle or decay product)

Summary of expected events

Process	Expected events in R1+R2
$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
Total Background	$0.15\pm0.09_{\rm stat}\pm0.01_{\rm syst}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream Background	$0.050^{+0.090}_{-0.030} _{stat}$

- In the final part of 2017 data-taking a copper plug was inserted in to the last dipole to mitigate this issue
- Upstream background has been further reduced by a ew final collimator that covers a much larger area in the transverse plane installed in mid-June 2018.

Preliminary Results

Event Observed	1
SES	$(3.15 \pm 0.01_{stat} \pm 0.24_{syst} \cdot 10^{-10})$
Expected Background	$0.15 \pm 0.09_{stat} \pm 0.01_{syst}$
Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$

$$\frac{1}{R} BR(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10} @ 90\% CL$$
$$BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @ 95\% CL$$

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (0.84 \pm 0.10) \times 10^{-10}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ BNL E949/E787 Kaon Decay at Rest

- Present result is from cut based analysis
- Full probability based analysis is under development

Conclusions 1

The new NA62 decay in flight technique to measure BR(K⁺ $\rightarrow \pi^+\nu\nu$) works!

- 1 event observed in 2016 data
- BR(K⁺ $\rightarrow \pi^+ \nu \nu$) < 14 x 10⁻¹⁰ @ 95% CL

Processing of the 2017 data is ongoing

- 20 times more than the present statistics
- upstream background reduction expected
- improvements on reconstruction efficiency

2018 data taking ongoing

studies to improve signal acceptance ongoing (MVA approach)

 $\sim 20 \; \text{SM} \; \text{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \nu \nu$ events expected before LS2

Exotic searches at NA62

Heavy Neutrinos (Neutrino portal HN') with mass up to the D meson

• $HN' \rightarrow \pi e, HN' \rightarrow \pi \mu$

Dark Photon (Vector Mediator A') with mass below (above) 600 MeV

• $A' \rightarrow e^+e^-$, $A' \rightarrow \mu^+\mu^-$

Why search for exotic particles?

No hints of new physics at high energy so far?

- Strong constraints on SUSY, extra dimensions, technicolor, etc.
- Constraints on new Z' bosons push new gauge groups into multi-TeV territory

Yet, SM is obviously incomplete:

- Neutrino masses and oscillations
 - See-saw mechanism with RH neutrinos with masses from 10⁻⁹ to 10¹⁵ GeV, with Yukawa couplings to the Higgs and SM leptons?
- Matter-antimatter asymmetry
 - Requires violation of baryon number, *C*, and *CP* in the early universe. Not enough non-equilibrium *CP* violation in the SM to explain it.
- Dark Matter
 - SM particles alone cannot account for the observed matter in the universe
 - Masses for viable DM candidates: 10⁻³¹ GeV (ultralight scalars) to 10²⁰ GeV (black holes) (10 keV to 100 TeV if from thermal origin)
- Strong CP problem
 - Apparent conservation of *CP* in QCD requires fine tuning
 - Axion (pseudo-Goldstone boson of spontaneously broken Peccei-Quinn symmetry) may resolve strong CP problem while providing DM candidate

Searches for exotic particles

		1 TeV	$\log m_X$
0.1	SM		3
		2	
g _x			
log		Adapted fro	m M. Pospelov

Distinguish searches by mass scale:

Sub-eV: Search for axions or axion-like particles (ALPs) via EDMs or in direct laboratory searches

MeV-GeV: Search for heavy neutrinos, ALPs, 2 light DM particles and mediators (dark photons, dark scalars) in fixed-target or collider experiments

10-1000 TeV: Search for NP in clean and very rare flavor processes or in EDMs

	Portal	Coupling
Much attention has been dedicated	Dark photon	$-\frac{\varepsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$
to TeV-scale models and ideas	Scalar	$(\mu S + \lambda S^2) H^{\dagger} H$
Need a systematic approach for NP at the intensity frontier	Axion	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$
	Neutrino/HNL	$y_N LHN$

3

NA62 designed to be sensitive to K⁺ BRs of order 10⁻¹² Well suited to explore new physics portals in the MeV-GeV scale

Exotic searches at NA62

Missing mass from K⁺ decays

• K⁺ $\rightarrow \pi^+ \nu \nu$ parasitic mode

 K^+ → π^+ X (dark photon, dark scalar, axion) K^+ → ℓ^+ N (Heavy Neutral Lepton)

- B/D/K decays in the target and reconstructed daughter particles in fiducial volume, parasitic dump mode
 - dedicated trigger stream
 - O(10¹⁷) POT already collected in 2016-2017

- B/D/K mesons produced by 400GeV/c protons in the TAX collimator and visible decays reconstructed in the fiducial volume
 - dedicated data taking with target lifted and tax closed (15 minutes)
 - expected 10¹⁸ POT / nominal year
 - O(10¹⁵) POT already collected in 2016-2017 (few hours)

Dark scalar, dark photon, axion, HNL decaying in 2-particles final state originated at target/TAX

Dark photons

Simplest hidden sector model introduces a new U(1) gauge symmetry with one extra gauge boson: the dark photon A'

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu}$$
$$\mathcal{L}_{\text{DS}} = -\frac{1}{4} (F'_{\mu\nu})^2 + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2 + |(\partial_{\mu} + ig_D A'_{\mu})\chi|^2 + \dots$$

Interaction of A' with visible sector through kinetic mixing with SM hypercharge

- QED-like interactions with SM fermions
- Free parameters: $\boldsymbol{\varepsilon}$ and $\boldsymbol{m}_{\boldsymbol{A}'}$

- With no decays to SM particles, in $K^+ \rightarrow \pi^+ X$ or $K^+ \rightarrow \pi^+ \pi^0$ with $\pi^0 \rightarrow \gamma X$
- With dedicated trigger for decays such as $A' \rightarrow e^+e^-$ or $A' \rightarrow \mu^+\mu^-$

Dark photons with invisible decays

Search for $K^+ \rightarrow \pi^+\pi^0$ with $\pi^0 \rightarrow \gamma A'$ and A' invisible

- Sensitivity for $m_{A'} < m_{\pi 0}$
- Signal: 1 track + 1 γ + missing energy
- Search for missing mass peak corresponding to A'
- Main background: $\pi^0 \rightarrow \gamma \gamma$ with 1 γ lost

data sample

- 1.5 × 10¹⁰ K⁺ decays
- Background from negative $m_{\rm miss}$ resolution tail from control data
- No significant excess observed 90% CL UL within expected statistical uncertainty band
- Analysis with full 2016 data set in progress

Dark photons with visible decays

Search for A' produced in target or dump with decay to e^+e^- or $\mu^+\mu^-$ in FV

- Meson decays: From primary beam secondaries, e.g., $pN \rightarrow X\pi^0$, $\pi^0 \rightarrow \gamma A'$
- Bremsstrahlung from primary beam: $pN \rightarrow XA'$

Sensitivity estimate assumes:

- 10¹⁸ pot on Be target
- Production in meson decays and bremsstrahlung
- Reconstruction of both e^+e^- and $\mu^+\mu^-$ channels
- 90% CL exclusion in zerobackground assumption

Sensitivity estimate does not include contributions from:

- A' from QCD processes
- A' produced in TAX

Data from 2016-2017 runs

- 3 × 10¹⁷ pot with $\mu\mu$ trigger
- 5 × 10¹⁶ pot with *ee* trigger

Dark scalar particles

Dark sector coupled to Higgs by new singlet scalar field *S*

 ϑ mixing angle S-Higgs

$$\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^{\dagger} H$$
$$\mathcal{L}_{\text{DS}} = S \bar{\chi} \chi + \dots \quad \theta = \frac{\mu v}{m_h^2 - m_S^2}$$

S produced most efficiently by decays of *B*-mesons from interactions in TAX Reconstruction of 2-track final states (*ee*, $\mu\mu$, $\pi\pi$, *KK*) with vertex pointing back to TAX:

Sensitivity estimate assumes:

- 10¹⁸ pot on Be target
- 90% CL exclusion in zerobackground assumption

Data from 2016-2017 runs

- 3×10^{17} pot with $\mu\mu$ trigger
- 5×10^{16} pot with *ee* trigger

NA62 estimated sensitivity for 10¹⁸ pot

Axion-like particles

Light pseudoscalar ALP may act as a mediator between SM and dark matter

$$\mathcal{L}_{\text{axion}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \frac{a}{4f_{\gamma}} F_{\mu\nu} \tilde{F}_{\mu\nu} + \frac{a}{4f_{G}} \text{Tr} G_{\mu\nu} \tilde{G}_{\mu\nu} + \frac{\partial_{\mu}a}{f_{l}} \sum_{\alpha} \bar{l}_{\alpha} \gamma_{\mu} \gamma_{5} l_{\alpha} + \frac{\partial_{\mu}a}{f_{q}} \sum_{\beta} \bar{q}_{\beta} \gamma_{\mu} \gamma_{5} q_{\beta}$$

NA62 can explore ALP masses in the MeV-GeV range

Focus on pseudoscalar ALPs whose dominant interaction is with photons:

- Dedicated running in beam dump mode (TAX closed)
- Primakoff ($\gamma\gamma$ fusion) production from interaction in TAX with $a \rightarrow \gamma\gamma$ decay
- ALP produced at low $p_{\perp} \rightarrow$ good acceptance even if detector far from production point Sensitivity estimate assumes: $e^+e^- \rightarrow \gamma\gamma$

- 10¹⁸ pot on closed TAX
- 90% CL exclusion in zerobackground assumption

Significant results obtainable with only 1 day of data taking $(1.3 \times 10^{16} \text{ pot})$

- Analysis of 2017 data in progress:
 - 5×10^{15} pot in dump mode

HNLs

Various extensions to SM to accommodate massive sterile neutrino (HNLs) (see A. De Roeck talk)

- Neutrino Minimal Standard Model (ν MSM)
- 3 right-handed massive neutrino N_i added to SM
 - N₁ mass O(10 KeV) : Dark Matter candidate
 - N_{2.3} mass O(100 MeV) : mass to SM neutrinos via see-saw mechanism
- 18 new parameters in the Lagrangian that can explain Dark Matter, Baryon Asymmetry of the Universe and neutrino oscillation
- HNL production in Kaon decays $(m_N < m_K)$: $K^+ \rightarrow \ell^+ N$ ($\ell = \mu$,e)

$$\Gamma(K \to \ell N) = \Gamma(K \to \ell \nu_{\ell}) \rho_{\ell}(m_N) \cdot |U_{\ell4}|^2$$

kinematic factor accounts
for the phase space and
the helicity suppression

HNLs SEARCH IN KAON DECAYS

HNLs SEARCH IN KAON DECAYS

Published results: NA62 Coll. PL B778 137 (2018) 10⁻⁶-10⁻⁷ limits for |U_{ℓ4}|² in the mass range 170-448 MeV/C²

- Analysis with 2016-2018 collected data on-going, 2 order of magnitude improvement expected on U₂₄
 - more statistics
 - GTK in
 - Iower background

HNLs with visible decays

Search for *N* produced in TAX with decays to two-track final states:

- Assume 10¹⁸ pot on closed TAX
- Reconstruct two-track final states HNL -> $\pi\mu/\pi e$, including open channels
- 90% CL exclusion in zero-background assumption
- Derive sensitivity for coupling scenarios in Shaposhnikov & Gorbunov 0705.1729v2

Data from 2016-2017 runs: 10¹⁷ pot with $\pi\mu$ trigger; few 10¹⁶ pot with πe trigger

Summary and outlook

Main goal of NA62 is to measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with 10% accuracy

- Physics runs in 2016, 2017, and 2018 data taking in progress!
- Data taking after LS2 under consideration

Hidden-sector physics program before LS2:

- Dedicated triggers compatible with πvv program to search for dark photons, dark scalars, and HNLs
- Short, dedicated beam-dump runs to search for ALP decays to γγ

After LS2, collection of 10¹⁸ pot in beam-dump mode will provide sensivity to various hidden-sector models

• Expected sensitivity beyond that of other initiatives with same time scale