Searches for Non-Standard Model Higgs Bosons

Syed Haider Abidi on behalf of the ATLAS collaboration Sep 13th, 2018

Introduction

- Discovery of a scalar particle @ ~
 125 GeV 'completed' the SM
 - Further probing of this scalar particle → very much SM-like
- However, this doesn't rule out BSM scenarios

- Different strategies:
 - Indirect probe for small deviations in properties (CP, couplings,...) of SM particles
 - Direct through decay SM particles decaying into BSM particles
 - Direct through production Explicitly look for BSM particles produced at the LHC decaying into SM particles
 - Focus of this talk

BSM Scenarios

- 2HDM model 2 Higgs doublet in the Lagrangian
 - 5 bosons: h, H, A & H±
 - Several types based on coupling Type-II ~ MSSM SUSY
 - 2 parameters at tree level: tanβ and M_A
 - Rich decay phenomenology
- Higgs triplet model (HTM)
 - Includes additional H^{±±}
- A curated list of results to cover the different decays

Heavy Neutral Higgs Boson

- Dominant production at LHC:
 - gluon-gluon fusion (ggF)
 - b-associated fusion (bbH)
- For Type-II, coupling to down-type fermions enhanced at large tanβ
 - φ→ττ̄ has large branching ratio
- For low tanß and $M_{\varphi} \ge 2M_{Top}$, $\varphi \rightarrow t\bar{t}$ decay is accessible

Latest ATLAS results

Search BSM A/H/Z→ττ	HIGG-2016-12	13 TeV, 36/fb
A/H→tt with interference	EXOT-2016-04	8 TeV, 20/fb

Heavy Higgs production © LHC

$A/H \rightarrow \tau \tau$

- Two decay modes TLepTHad & THadTHad
 - For $M_{A/H} < 0.6$ TeV, $\tau_{Lep}\tau_{Had}$ dominates
 - ThadThad is sensitive for higher mass range
- Target production mode b-tag and b-veto regions
- Large background from jet→τ conversion
- Model independent limit on ggF and bbH XS
- Exclusion at the 95% CL for hMSSM scenarios:

 $tan\beta > 1.0$ for $M_A = 0.25$ TeV $tan\beta > 42$ for $M_A = 1.5$ TeV

 $tan\beta$

A/H→tt

- Significant interference: A/H→tt and gg→tt
 - Modification of resonance to peak-dip structure
- Resolved kinematics, with lepton+jet final state
 - Sensitivity up to M_{A/H} ~ 800 GeV
 - 6 categories lep flavour and tagged
 - M_{tt}reco as the discriminating variable
- Exclusion at the 95% CL for Type-II 2HDM: $tan\beta < 0.69$ for $M_A = 550$ GeV $tan\beta < 0.72$ for $M_H = 550$ GeV

Heavy Neutral Higgs Boson

- In BSM scenarios, heavy Higgs decay to vector boson possible
 - Mixing of the h & H particle states
 - Coupling parameterized typically as cos(β-α)

Latest ATLAS results

H→ZZ→4I,2I2v	HIGG-2016-19	
H→WW→eνμν	HIGG-2016-31	12 ToV 26/fb
A→ZH→IIbb & A→Vh→II'bb	EXOT-2016-34 & EXOT-2016-10	13 TeV, 36/fb
Combination of VV/VH final states	EXOT-2017-31	

New

$H \rightarrow ZZ \rightarrow 41,212 \vee$

- Events with opposite flavour same sign lepton pair(s)
 - 4I: Fully reconstruct the decay kinematics m_{4I} as observable
 - 2l2v: Reconstruct the leading Z m_T as observable
- Split into VBF- and ggF-like SR
 - · Gain in sensitivity by splitting in lepton flavour
- Interference between h-H and Bkg taken into account for large width
- Small excess at M_H ~ 700 GeV in 4I
 - Global significance at 1.3σ

H→WW→evµv

- Events with opposite flavour lepton pair with missing energy
 - Reduce Z+jets background
- · 3 Signal region:
 - 2 VBF-Like ($N_{jets} = 1 \text{ or } N_{jets} \ge 2$)
 - 1 ggF-like (inclusive in N_{jets})
- Multiple interpretation of the results
 - Large width interference with background

 $cos(\beta-\alpha)$

$A \rightarrow ZH \rightarrow IIbb, A \rightarrow Vh \rightarrow II'bb$

- Search for a heavy CP-odd scalar
- Isolated leptons or v and ≥ 2 b-tagged jets
- · ZH: search for heavy CP-odd and even scalar
- Vh: all lepton vector boson decay
 - Impacts of large width take into account
- Results interpreted in various models
 - Mild excess at $M_A = 440$ GeV for $A \rightarrow Vh$
 - Arises from 3+ b-tag region in the 2-lepton channel. Local (global) significance: 3.6 (2.4)σ

Combination of VV/VH final states

- A global heavy resonance search combination of ATLAS results
 - Final states: qqqq, vvqq, lvqq, llqq, lvlv, llvv, lvll, llll, qqbb, vvbb, lvbb, and llbb
 - Correlation of experimental and theoretical systematics
- General results parameterized as a function of quark, lepton and boson couplings
- For scalar resonance, exclusion limits at 95% CL
 - ggF: 380 1.3 fb for $M_H \in [0.3 3.0 \text{ TeV}]$
 - VBF: 140 3.2 fb for $M_H \in [0.5 3.0 \text{ TeV}]$

Di-Higgs Search

- Low mass Higgs boson offers another portal to probe for BSM physics
- Search for heavy scalar decaying into two 125 GeV Higgs boson
 - Many decay modes balance between background and expected events

Latest ATLAS results

	H→hh→bbbb	EXOT-2016-31	
	H→hh→bbγγ	<u>HIGG-2016-15</u>	13 TeV,
/	H→hh→bbττ	<u>HIGG-2016-16</u>	27.5-36/fb
/ [HH combination	ATLAS-CONF-2018-043	

DiHiggs BR

	bb	ww	π	ZZ	YY
bb	33%				
ww	25%	4.6%			
π	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
YY	0.26%	0.10%	0.029%	0.013%	0.0053%

H→hh→bbbb/bbγγ/bbττ

- bbbb: Largest branching ratio but large background
 - Resolved and boosted topology targeted separately to extend sensitivity
- bbγγ: Profit from narrow peak in yy distribution
 - Improvement in resolution by constraining $M_{jj} = M_{yy}$
- bbтт: Target decay modes тьертнад & тнадтнад
 - BDT to separate signal from di-top, Z→ττ and multi jet background

Combination - Di-Higgs Search

- Combination of the bbbb, bbγγ and bbττ channels
 - Correlation of experimental and theoretical systematics
- Stringent limits on SM production @ < 6.7SM
 - Limits on non-resonant production
- Exclusion limit on heavy spin-0 particles

Charged Higgs

- Extension to SM predict charged scalar particles
 - Further extensions include doubly charged Higgs (H±±)
- In many models such as MSSM, H± predominantly decays to tb or τν final states
 - Top associated production at the LHC
- H±± → W±W± probes high triplet vacuum expectation values

Latest ATLAS results

New

New

H±→τν	HIGG-2016-11	
H± → tb	HIGG-2017-04	13 TeV, 36/fb
H±± → W±W±	HIGG-2016-09	

$H^{\pm} \rightarrow \tau \vee$

- Targets top associated production mode
 - All-hadronic and leptonic W decay
 - Only T_{Had} considered
- Interference in production at M_{H+} ~160-180 GeV
 - First time this region is probed!
- BDT observable trained in 5 mass bins with similar kinematic
 - 1- and 3- prong τ polarization used to reduce background
- All tan β values are **excluded** for M_{H+} < 160 GeV. M_{H+} ~1.1 TeV is **excluded** at tan β = 60 at 95%CLs for hMSSM scenario

H± → tb

- Complementary to the τν sensitivity for low tanβ
- Top associated production:
 - All leptonic or semi-lepton decay of Ws
- Multiple categories based on number of jets and b-tagged jets
 - BDT observable in each category
- Exclusion limits at 95% CL for hMSSM scenario:
 - $tan\beta \in [0.5-1.95]$ for $M_H \in [200 965 \text{ GeV}]$

BDT Output

$H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$

- First search probing in this decay mode
- Pair production 4 W's in the final state
 - · 2 same sign-, 3- and 4-lepton + jet final state
 - b-jet veto to reduce di-top background
- Cut optimization on 8 discriminating variables
 - Function of the probed mass
- Counting experiment in 6 categories
- M_{H++} < 220 GeV excluded at 95% CL for triplet vacuum expectation value of 0.1 GeV

Conclusions

- ATLAS is highly active in searching for BSM physics in the Higgs sector
 - A small subset of results shown
 - Full list of results at https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- · Global summary: No significant excess over SM has been found so far
 - Exclusion limits set for different BSM scenarios
- Larger dataset being collected ~ 150/fb
 - Gearing up to explore new phase space!

Backup

ATLAS

Layer of the detector

$A/H \rightarrow \tau \tau$

$H \rightarrow ZZ \rightarrow 41,212 \vee$

$H \rightarrow ZZ \rightarrow 41,212v$

$H \rightarrow ZZ \rightarrow 41,212 \vee$

H→WW→evµv

$$m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left|\mathbf{p}_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}},$$

where

$$E_{\mathrm{T}}^{\ell\ell} = \sqrt{\left|\mathbf{p}_{\mathrm{T}}^{\ell\ell}\right|^2 + m_{\ell\ell}^2},\,$$

and $\mathbf{p}_{\mathrm{T}}^{\ell\ell}$ is the transverse momentum vector of the leading and subleading leptons.

$A \rightarrow ZH \rightarrow IIbb$

A→Vh→II'bb

H→hh→bbbb

- Largest branching ratio but large backgrounds
- Resolved: four R=0.4 b-tagged jets, with M_{2j} ~ M_h
 - Sensitivity up-to 1.2 TeV
- Boosted: two R=1.0 jets with M_J ~ M_h and 2-4 b-tag sub-jets
 - Sensitivity up-to 3 TeV
- M4_j jet pT cut to reduce background
- Veto events with 3 jet topology consistent with top decay
- Final discriminant invariant mass of the 4(2) jet system

H→hh→bbγγ

- Smaller background due to presence of isolated photons
 - Narrow peak in the M_W spectrum with 1 or 2 b-tagged jets
- 'Loose' ('Tight') selection for low(high) resonance SR
 - Higher jet pT cuts and Smaller M_W / M_{ii} window
- Veto >2 b-tagged jets event to ensure orthogonality with bbbb
- 60% improvement in resolution by constraining $M_{ii} = M_{VV}$
- Parameterized fit to M_{vvii} distribution
- For scalar resonance, exclusion limits at 95% CL
 - 1.1 0.12 pb for $M_H \in [0.26 1.0 \text{ TeV}]$

events

H→hh→bbττ

- Two decay modes TLepTHad & THadTHad
 - Further split, for semileptonic decay based on triggers
- BDT trained to separate signal from di-top, Z→ττ and multi jet background
 - Trained for each signal mass point
 - Includes nearby mass points to allow to interpolation
- Mass range 305 GeV < M $_{x}$ < 402 GeV **excluded at** 95% CL for tan β = 2 for hMSSM scenario

