

on behalf of the CMS Collaboration

Large Hadron Collider (LHC)

CMS

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9-14, Salvador, Brazil

HCb

ATLAS

CÉRN

The CERN—LHC complex

LISHEP 2018, Sept 9-14, Salvador, Brazil

The CMS experiment

central and forward sub-detectors

Compact Muon Solenoid (CMS)

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9-14, Salvador, Brazil

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9-14, Salvador, Brazil

 The CMS experiment has forward sub-detectors to enhance its pseudorapidity coverage:

Hadronic Forward (HF):

UERJ

 The CMS experiment has forward sub-detectors to enhance its pseudorapidity coverage:

- Hadronic Forward (HF):
 - $3.0 < |\eta| < 5.2$
 - Long and <u>short</u> quartz fibers
 (~2k channels);
 - Electromagnetic and Hadronic sections.

 The CMS experiment has forward sub-detectors to enhance its pseudorapidity coverage:

Hadronic Forward (HF):

• CASTOR:

 $-6.6 < \eta < -5.2$

 The CMS experiment has forward sub-detectors to enhance its pseudorapidity coverage:

• Hadronic Forward (HF):

 $3.0 < |\eta| < 5.2$

• CASTOR:

- $-6.6 < \eta < -5.2$
- 100 m
- Tungsten and quartz plates as a <u>sampling</u> calorimeter;
- Only at **minus** side of CMS;

12x hadronic modules 2x EM modules

Forward Physics

Kinematical range for forward proton scattering

Phase-space region

Jet-Gap-Jet

Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at $\sqrt{s} = 7$ TeV

Jet-Gap-Jet events

There is a probability to have an interaction with large momentum transfer to produce a pair of jets with <u>large rapidity gap</u> in pseudorapidity η;

- GAP: no QCD radiation fills the gap,
 i.e., a color-singlet exchange (CSE)
 (a.k.a. <u>diffractive</u> event);
- Dijet production is in general well described by the <u>DGLAP</u> equation;

Jet-Gap-Jet events

There is a probability to have an interaction with large momentum transfer to produce a pair of jets with <u>large rapidity gap</u> in pseudorapidity η;

- GAP: no QCD radiation fills the gap,
 i.e., a color-singlet exchange (CSE)
 (a.k.a. <u>diffractive</u> event);
- Dijet production is in general well described by the <u>DGLAP</u> equation;
- The presence of a large interval in pseudorapidity [Δη(jj)] is better described by the <u>BFKL equation</u>.

15

LHC data

Hadrons

Jet

Dijet production has been seen at <u>Tevatron</u> and <u>HERA;</u>

CMS reports the first observation of such event at the LHC at 7 TeV;

• The fraction of events is measured in **8/pb** of data for **2** leading jets with:

 $p_T^{\rm jet} > 40 {
m GeV}$

- reconstructed at <u>opposite</u> ends of CMS.
- The data are collected with **3** different triggers:
 - Threshold on <u>uncorrected</u> $p_{T}(j)$ of 15, 30, and 70 GeV.
- Single- or zero-vertex requirement rejects most of the events with pileup interactions.

Jet

Determine the **CSE fraction** as function of: φ

1. Pseudorapidity separation in $\Delta \eta$ (jj);

2. $p_T^{\text{jet2}}(\mathbf{j})$ of the 2nd leading jet.

Observables

- Jets are reconstructed with infrared- and collinear-safe **anti-k** algorithm;
- Ranges of p_{T,2}(j): 40-60, 60-100, and 100-200 GeV;
 - <u>Pileup</u> corresponds to 1.16, 1.17, and 1.60.

• To ensure **pseudorapidity gaps**, additional conditions required:

- 1. two leading jets with $1.5 < |\eta(j)| < 4.7$;
- 2. two leading jets in <u>opposite hemispheres</u>: $\eta(j_1)\eta(j_2) < 0$.

0

1

-1

n

Observables

Gustavo Silveira (UFRGS | UERJ, Brazil)

Ntracks distribution

• The N_{tracks} is obtained from a distribution of <u>charged-particle</u> <u>multiplicity</u>, N_{tracks} , with $|\eta(\text{all})| < 1$ for $p_{T}(\text{all}) > 0.2$ GeV, between the **2 jets**;

- Contamination from secondary interaction reduced with $\frac{\sigma_{p_T}}{\sigma_T} < 10\%$
- Jet axes separated by $|\Delta \eta(jj)| > 3$, typical for diffractive studies.

EPJC 78 (2018) 242

CMS-FSQ-12-001

 p_T

Ntracks distribution

• The N_{tracks} is obtained from a distribution of <u>charged-particle</u> <u>multiplicity</u>, N_{tracks} , with $|\eta(\text{all})| < 1$ for $p_{T}(\text{all}) > 0.2$ GeV, between the **2 jets**;

- Contamination from secondary interaction reduced with $\frac{O_{PT}}{2} < 10\%$

- Jet axes separated by $|\Delta \eta(jj)| > 3$, typical for diffractive studies.

EPJC 78 (2018) 242

CMS-FSQ-12-001

 p_T

Jets distributions (full p_T range)

18) 242

Jets distributions (full p_T range)

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9–14, Salvador, Brazil

2018) 242

CSE fraction (I)

$$f_{\rm CSE} = \frac{N_{\rm events}^{\rm F} - N_{\rm non-CSE}^{\rm F}}{N_{\rm events}}$$

Insensitive to trigger eff. and jet reconstruction uncertainty.

Similar selection as DØ and CDF results, with minimal effect of gap sizes;

$p_{\rm T}^{\rm jet2}$ range (GeV)	$\langle p_{\rm T}^{\rm jet2} \rangle$ (GeV)	f _{CSE} (%)	
40–60	46.6	$0.57 \pm 0.13 \pm 0.09$ $N_{\text{tracks}} < 2$	<u>S</u> UFŘ
60–100	71.2	$0.54 \pm 0.12 \pm 0.04$ N _{tracks} < 2	
100–200	120.1	$0.97 \pm 0.15 \pm 0.03$ N _{tracks} < 3	

UER.

CSE fraction (I)

• The **fraction** of diffractive events is defined as:

$$f_{\rm CSE} = \frac{N_{\rm events}^{\rm F} - N_{\rm non-CSE}^{\rm F}}{N_{\rm events}}$$

Insensitive to trigger eff. and jet reconstruction uncertainty.

Similar selection as DØ and CDF results, with minimal effect of gap sizes;

$p_{\rm T}^{\rm jet2}$ (GeV)	V) 40–60		60–100		100–200		2
$\Delta \eta_{\rm jj}$ range	$\langle \Delta \eta_{ m jj} angle$	f _{CSE} (%)	$\langle \Delta \eta_{ m jj} angle$	f _{CSE} (%)	$\langle \Delta \eta_{ m jj} angle$	f _{CSE} (%)	CN
3–4	3.63	$0.25 \pm 0.20 \pm 0.04$	3.62	$0.47 \pm 0.19 \pm 0.05$	3.61	$0.78 \pm 0.21 \pm 0.06$	
4–5	4.46	$0.41 \pm 0.16 \pm 0.14$	4.45	$0.47 \pm 0.16 \pm 0.08$	4.41	$0.99 \pm 0.23 \pm 0.06$	
5–7	5.60	$1.24 \pm 0.32 \pm 0.10$	5.49	$0.91 \pm 0.32 \pm 0.21$	5.37	$1.95 \pm 0.69 \pm 0.44$	UNIVERSIDA DO RÍO GR

CSE fraction increases for $\Delta\eta$ (jj)

CSE fraction (II)

• Results show that the fraction **increases** with $p_T^{\text{jet2}}(\mathbf{j})$;

- This confirms that the <u>diffractive</u> cross section decreases less rapidly than the <u>inclusive</u> cross section does.
- Fraction also decreases with increasing colliding energy;
 - More MPI results in smaller gap survival probability.

inclusive Jets

Very forward inclusive jet cross sections in p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Gluon recombination

Public CMS-FSQ-17-001

Studies in proton-Nucleus collisions are suitable for searchers of signals of

Gluon recombination

Public CMS-FSQ-17-001

- Studies in proton-Nucleus collisions are suitable for searchers of signals of
 - gluon saturation;
- This goal leads to the investigation of nonlinear effects and alternatives for the description of parton evolution equations;
- Nonlinear effects can be studied with low x partons
 by measuring low p_T jets in p-Pb collisions.

Measuring jets

• CMS makes use of **CASTOR** to measure low p_T jets at a pseudorapidity range of $-6.6 < \eta < -5.2$ in **non-diffractive events**;

- This analysis extends previous
 CMS results in proton-proton
 collisions at 7 and 13 TeV.
- Jets selected with *p*_T ≈ 4 GeV in p-Pb (3.13/nb) and Pb-p runs (6.71/nb);
 - Minimally one tower deposit above 4 GeV in HF.

Public

Measuring jets

• CMS makes use of **CASTOR** to measure low p_T jets at a pseudorapidity range of $-6.6 < \eta < -5.2$ in **non-diffractive events**;

- This analysis extends previous
 CMS results in proton-proton
 collisions at 7 and 13 TeV.
- Jets selected with *p*_T ≥ 4 GeV in p-Pb (3.13/nb) and Pb-p runs (6.71/nb);
 - Minimally one tower deposit above 4 GeV in HF.

Public

Ratio of jet spectra (unfolded)

31

UERJ

Public

inclusive spectra

Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at $\sqrt{s} = 13$ TeV

The production of particles at large rapidities (typically $|\eta| > 5$) are used to investigate:

- 1. multiparton interactions (MPI);
- 2. initial- and final-state radiation;
- 3. fragmentation of beam remnants; and
- 4. diffraction.

33

JHEP 08 (2017) 046

The production of particles at large rapidities (typically $|\eta| > 5$) are used to investigate:

- 1. multiparton interactions (MPI);
- 2. initial- and final-state radiation;
- 3. fragmentation of beam remnants; and
- 4. diffraction.

JHEP 08 (2017) 046

• The production of particles at large rapidities (typically $|\eta| > 5$) are used to investigate:

- 1. multiparton interactions (MPI);
- 2. initial- and final-state radiation;
- 3. fragmentation of beam remnants; and

4. diffraction.

JHEP 08 (2017) 046

• The production of particles at large rapidities (typically $|\eta| > 5$) are used to investigate:

1. multiparton interactions (MPI);

2. initial- and final-state radiation;
 3. fragmentation of beam remnants; and
 4. diffraction.

a.k.a. underlying events

JHEP 08 (2017) 046

CMS-FSQ-16-002

CASTOR data at 13 TeV is used in this analysis given its sensitivity to MPI;

- Few reports on proton-proton collisions at 0.9, 2.76, 7 and 8 TeV.
- This report focus on **electrons**, **photons** (π^0 decays), **hadrons** (π^{\pm}).

Event selection

• Particles are selected in **both** sides of the gap with invariant masses M_X and M_Y ;

– The momentum loss of the proton is variable used to select the events, which is a common variable in <u>diffractive</u> physics:

Energy spectra (unfolded)

Data is compared with Monte Carlo models at particle-level spectra;

Best results with EPOC and QGSJET; PYTHIA tunes <u>overestimate</u> the data.

JHEP 08 (2017) 046

Dijets with leading proton

Measurement of dijet production with a leading proton in proton-proton collisions at 8 TeV with the CMS and TOTEM detectors at the LHC

Proton detection

 Both <u>CMS</u> and <u>TOTEM</u> detectors are employed to detect a scattered proton from a diffractive event;

In a diffractive interaction, the intact proton is scattered at small angles;

- TOTEM Roman Pots are used to collect this information;
- TOTEM acceptance **increases** the CMS pseudorapidity coverage.

Public

Event selection

The usual variables for diffractive interactions related the momentum loss by the proton:

• An amount of **37.5/nb** of data is analyzed to measure the **single- diffractive cross section** in terms of *t* and ξ ;

$$p_T(jj) > 40 \text{ GeV}, |\eta(jj)| < 4.4$$

$$0.03 < |t| < 1.0 \text{ GeV}^2, \ 0 < \xi < 0.1$$

Public

Cross section (unfolded)

The cross section are determined as

 $\frac{d\sigma_{jj}}{dt} = \mathcal{U} \left\{ \frac{N_{jj}^i}{\mathcal{L}A^i \Delta t^i} \right\}$

- N_{jj}: #dijets in *i*-th bin;
- \mathcal{L} : luminosity
- A: acceptance
- $-\Delta t$, $\Delta \xi$: bin widths
- U: unfolding corrections based on Monte Carlo studies.

 $\frac{d\sigma_{jj}}{d\xi} = \mathcal{U} \left\{ \frac{N_{jj}^i}{\mathcal{L}A^i \Delta \xi^i} \right\}$

MC comparison: POMWIG PYTHIA8 4C PYTHIA8 CUETP8M1 PYTHIA8 Dynamic Gap Cap survival probability: $(S^2) = 7.4\%$ (from Data/MC ratio)

Public

Results

Public CMS-FSQ-12-033

The cross section measurement by CMS:

$\sigma = 21.7 \pm 0.9 \text{ (stat.)} \stackrel{+3.0}{_{-3.3}} \text{ (syst.)} \pm 0.9 \text{ (lumi.)} \text{ nb}$

• In agreement with <u>PYTHIA8</u> Dynamic Gap model: $\sigma = 23.7$ nb.

LR

UERJ

Ratio to inclusive jets

Public CMS-FSQ-12-033

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9–14, Salvador, Brazil

2-photon dilepton production

Observation of proton-tagged, central (semi)exclusive production of highmass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer

Experimental setup of PPS

The PPS detector makes use of TOTEM Roman Pots (RP) to allocate tracking and timing detectors (sectors 45 and 56):

- Scattered protons with 84–97% of the incoming beam momentum are <u>detected;</u>
- <u>2016</u> configuration: tracking detectors are silicon sensors with 512 strips.
 - In 2017, PPS moved to **3D pixel detectors**.

JHEP 07 (2018) 153

CMS-PPS-17-001

CT-PPS CT-PPS tracking 2 **CT-PPS** tracking 1 timing **Towards IP**

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9-14, Salvador, Brazil

Two-photon production

Apart of diffractive production, the <u>two</u>-photon interaction is also an elastic collision with intact protons scattered at **small angles**;

- The Precision Proton Spectrometer is meant to measure the forward protons of the elastic interaction at a high-luminosity regime;
 - Acceptance for protons detected in <u>both</u> arms start at *M*(II) ≥ 400 GeV;
 - Adding <u>semi-exclusive</u> events can increase data sample.

48

Event selection

 The analysis considers 9.4/fb of 2016 data to search for (semi-)exclusive dilepton production;

- The strategy follows the approaches employed in previous CMS analyses;
 - 1. Leptons are selected with $p_T > 50$ GeV with opposite charge;
 - 2. No tracks from the vertice given a veto distance;
 - 3. Consistent back-to-back leptons based on acoplanarity;
 - 4. Dileptons with invariant mass **above 110 GeV**.

Event selection

JHEP **07** (2018) 153 CMS-PPS-17-001

 The analysis considers 9.4/fb of 2016 data to search for (<u>semi-)exclusive</u> <u>dilepton</u> production;

The strategy follows the approaches employed in previous CMS analyses;

LISHEP 2018, Sept 9–14, Salvador, Brazil

Central detector

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9-14, Salvador, Brazil

UERJ

• Proton momentum loss is matched with that of the dileptons:

$$\xi(\ell^+\ell^-) = \frac{1}{\sqrt{s}} \left[p_{\rm T}(\ell^+) e^{\pm \eta(\ell^+)} + p_{\rm T}(\ell^-) e^{\pm \eta(\ell^-)} \right]$$

Different acceptances depend on stations and beamline positions:

- sector 45, RP 210N: $\xi > 0.033$,
- sector 45, RP 210F: $\xi > 0.024$,
- sector 56, RP 210N: $\xi > 0.042$,
- sector 56, RP 210F: $\xi > 0.032$.

Results

• A total of **12 events** ($\mu^+\mu^-$) and **8 events** (e^+e^-) are observed;

- Significances are $4.3\sigma (\mu^+\mu^-)$ and $2.6\sigma (e^+e^-)$:

combined >5o

- Consistent with MC predictions within acceptance and overall efficiency.

Acceptance

JHEP **07** (2018) 153 CMS-PPS-17-001

54

UERJ

Summary

 The CMS detector has shown its capability for measuring forward tracks with high efficiency;

• These reports cover important physics aspects like:

- Detailed study of **underlying events** at 7 TeV;

- Saturations effects at high-gluon density;
- Central diffractive production of jets; and

- First results of the new forward detector PPS.
- More interesting reports to come in <u>2018</u> with additional data from RunII.

Backup slides

Additional information about the analyses

Hadronic Forward

- Both sides of CMS: HF+ | HF-;
- Long and <u>short</u> quartz fibers (~2k ch);
 - Electromagnetic and Hadronic parts
- Specialized to measure:
 - 1. Elastic/Diffractive xsec;
 - 2. Forward energy flow;
 - 3. Jet spectra and correlations.

CASTOR

Tungsten and quartz plates as a sampling calorimeter;

Only at minus side of CMS;

• No segmentation on η — energy spectra instead of p_T ;

- 1. Inelastic/Diffractive xsec;
- 2. Forward energy and UE;
- 3. jet spectra.

12x hadronic modules 2x EM modules

Jet-Gap-Jet

Source	40–60 GeV	60–100 GeV	100–200 GeV
Jet energy scale	±5.1	±6.7	± 2.1
Tracks quality	± 0.3	± 1.3	± 0.4
Background subtraction	± 14.1	± 0.9	± 1.9
Total systematic	± 15.0	± 6.9	± 2.8
Statistical	± 23	± 22	±15

59

<u>()</u> UFRGS UNIVERSIDADE FEDERA DO RIO GRANDE DO SU

îF,

UERJ B ASTADO DO

Inclusive jets

Source uncertainty	p+Pb		Pb+p		p+Pb/Pb+p	
and the the	600 GeV	2.5 TeV	600 GeV	2.5 TeV	600 GeV	2.5 TeV
Energy scale	+2% -2%	+145% -71%	+6% -6%	+170% -82%	+5% -7%	+57% -9%
Model dependence	+14% -14%	+37% -37%	+13%	+46% -46%	+24% -24%	+48% -48%
Alignment	+3% -3%	+24% -24%	+3% -6%	+49% -24%	+10% -6%	+4% -6%
Jet indentification	+1% -1%	+22% -22%		<1%	+1% -1%	+21% -21%
Total	+15% -14%	+153% -87%	+15% -16%	+177% -98%	+26% -26%	+77% -54%

UERJ

Energy deposits in CASTOR

JHEP **08** (2017) 046 CMS-FSQ-16-002

A total of 0.34/µb of data is analyzed for CASTOR calibration;

- Beam halo muons and responde to pions/electrons are employed;

The total energy deposited in CASTOR is measured and compared to model predictions.

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9–14, Salvador, Brazil

Inclusive spectra

	Te	otal	Electron	magnetic	Had	ronic
A Contraction	$300{ m GeV}$	$3000{ m GeV}$	$300{ m GeV}$	$1200{\rm GeV}$	$300{ m GeV}$	$2000{\rm GeV}$
Energy Scale	$^{+17\%}_{-14\%}$	$^{+94\%}_{-77\%}$	+5.9% -2.1%	$+93\% \\ -65\%$	$^{+11\%}_{-10\%}$	$^{+169\%}_{-80\%}$
Unfolding	$\pm 5.8\%$	$\pm 6.4\%$	$\pm 5.2\%$	$\pm 4.1\%$	$\pm 6.9\%$	$\pm 17\%$
Event selection	$\pm 0.5\%$	$<\!0.01\%$	$\pm 0.14\%$	$<\!0.01\%$	$\pm 0.06\%$	$<\!0.01\%$
Luminosity	$\pm 2.6\%$					
Statistical	$\pm 1.2\%$	$\pm 4.3\%$	$\pm 1.5\%$	$\pm 5.9\%$	$\pm 1.0\%$	$\pm 4.2\%$

62

UFRGS

Gustavo Silveira (UFRGS | UERJ, Brazil)

LISHEP 2018, Sept 9-14, Salvador, Brazil

Dijets with tagged proton

 $\Delta \sigma / \sigma$ Uncertainty source Trigger efficiency $\pm 2\%$ Calorimeter energy scale +1/-2% Jet energy scale and resolution +9/-8% Background $\pm 2\%$ Resolution $\pm 2\%$ +9/-12 % Horizontal dispersion Acceptance and unfolding $\pm 2\%$ Unfolding bias $\pm 3\%$ +14/-15 % Total

Alignment

the RPs w.r.t. the LHC collimators;

• Physics fills are needed to position of PPS for each fill.

 The horizontal alignment is based on the kinematic distribution of scattered protons in all fill.

Proton reconstruction

The trajectory of the protons in the RPs is a **straight line** given the <u>absence</u> of magnetic fields;

 ${\ensuremath{\, \circ}}$ Hits are studied in each strips with at least 3 hits at 15 σ from the beam line;

CMS+TOTEM 2016, √s = 13 TeV y (mm) 15 10 10³ 5 10² 0 -5 10 -10 -15 5 10 15 x (mm)

 Inefficiency depends on the pileup and ranges
 from 15% to 40% in 2016 data.

JHEP 07 (2018) 153

CMS-PPS-17-001

PPS

	μ	$^+\mu^-$	e	$^{+}e^{-}$
Sources of uncertainty	Drell-Yan	Double diss.	Drell-Yan	Double diss.
Statistics of Z sample	5%	5%	4%	4%
$\xi(\ell^+\ell^-)$ reweighting	25%		11%	
Track multiplicity modeling	28%		14%	
Survival probability		100%		100%
Luminosity		2.5%		2.5%

666

UERJ UERJ