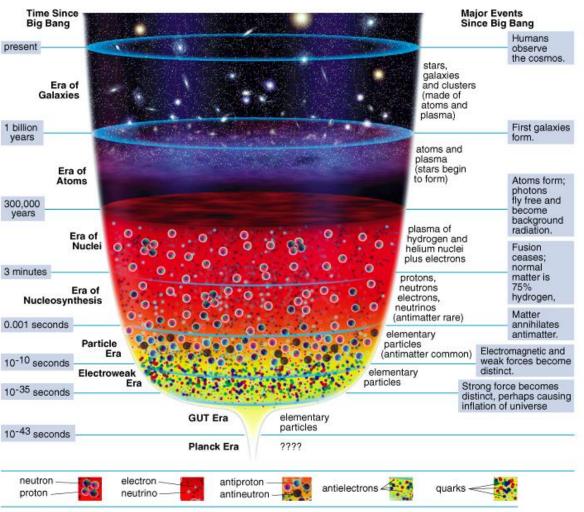


FEMTOSCOPY DAY

2016

November 4. Eszterházy University, Károly Robert Campus, Gyöngyös, Hungary

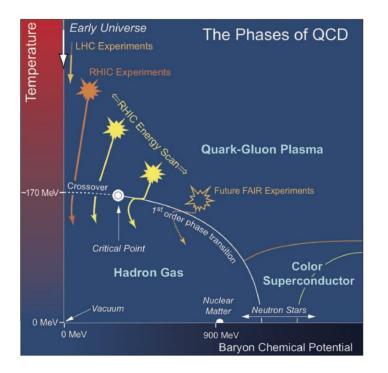

INITIAL ENERGY DENSITY IN LHC P+P COLLISIONS

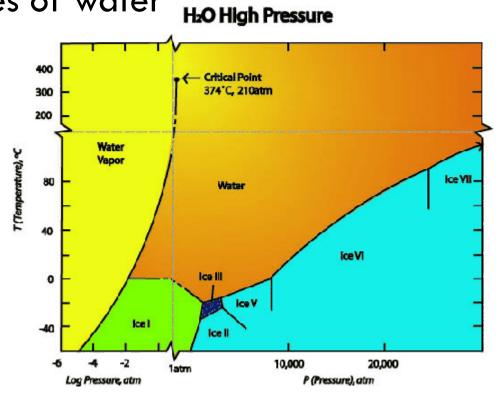
04 Nov 2016

M. Csanád & the Hungarian femtoscopy group

Heavy ion physics and the early Universe

- □ Time evolution: → cooling
- Phase transitions crossovers
- Atoms ionize at: few 1000 K
- Nuclei melt at: million K
- Hadrons melt at:
 10¹² K

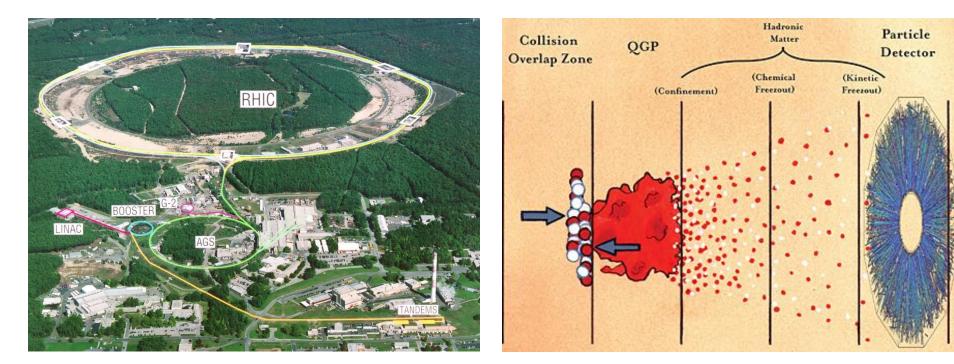



C Addison-Wesley Longman

Phase diagram of the strongly interacting matter

Hadron gas, quark medium, many other phases

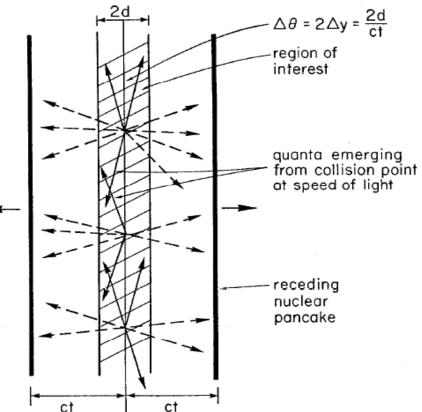
Compare to the phases of water



Little Bangs

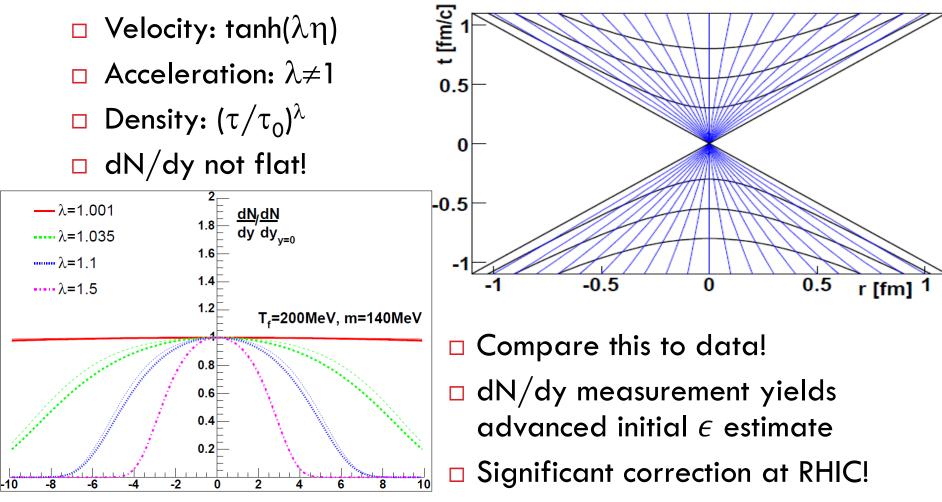
4

- How to investigate these phases? Particle accelerators!
 High initial energy density and pressure
- Quark matter recreated in A+A; how about p+p?


The Bjorken-estimate

□ The original idea: energy density based on dE/dy
 □ QGP critical ɛ: ≤1 GeV/fm³ (from ɛ_c=6-8×T_c⁴)
 □ Result (~2000x cited)

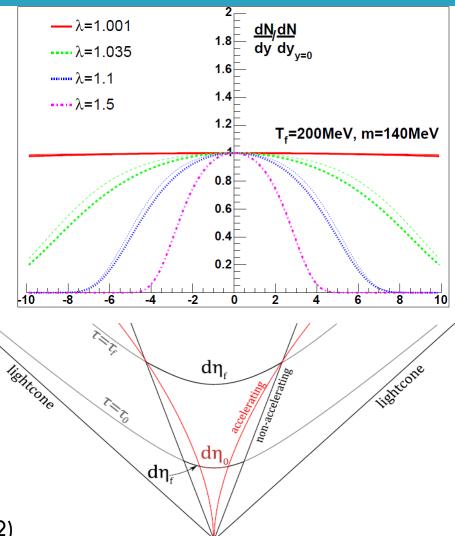
 $E = N \frac{dE}{dy} \Delta y = N \frac{dE}{dy} \frac{1}{2} \frac{2d}{t} = \epsilon A d$ $\epsilon_{\rm Bj} = \frac{1}{R^2 \pi \tau_0} \frac{dE}{d\eta} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dN}{d\eta}$


Needs correction!

□ Ref.: Phys.Rev. D27 (1983)

A solution of relativistic hydro

6



M. Nagy, T. Csörgő, M. Csanád: Phys.Lett. B663 (2008) 306-311 (nucl-th/0605070)

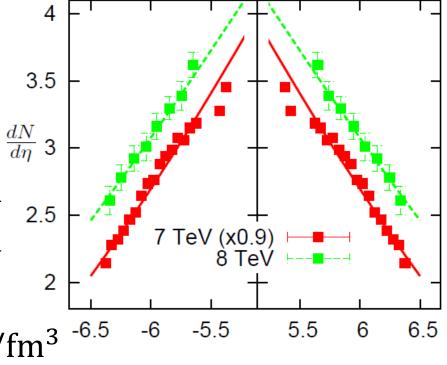
An advanced estimate

- \Box Fact: dN/dy not flat
- Finiteness & acceleration
- Analytical investigation:
 - \blacksquare Acceleration parameter λ
- Two modifications:
 - $\blacksquare y \neq \eta \& \eta_{\text{final}} \neq \eta_{\text{initial}}$
- Work by acceleration!
- $\Box \text{ Correction w.r.t. EoS:} \\ \epsilon = \epsilon_{\text{Bj}} (2\lambda 1) \left(\frac{\tau_f}{\tau_i}\right)^{(\lambda 1)(2 c_{\text{sound}}^2)}$

E.g.: J.Phys.G35 (2008) 104128 (arXiv:0805.1562)

Initial energy density at LHC

- Rough estimate via the Bjorken formula at 7 TeV
 - **\square** Number of particles at midrapidity: 1.5×5.89
 - \blacksquare Average energy: $\langle m_t \rangle = \langle E \rangle = 0.562~{\rm GeV}$
 - Transverse size of the system $R^2 \pi = \sigma_{tot}^2 / 4\sigma_{el} = 9.8 \text{ fm}^2$
 - Formation time $\tau_0 = 1 \text{ fm}/c$ (conservative estimate)

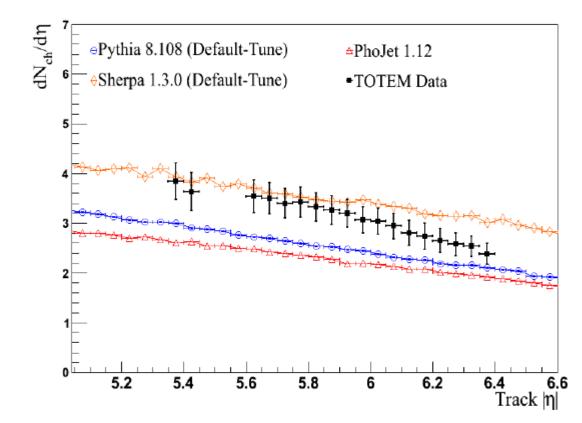

Energy density from this:

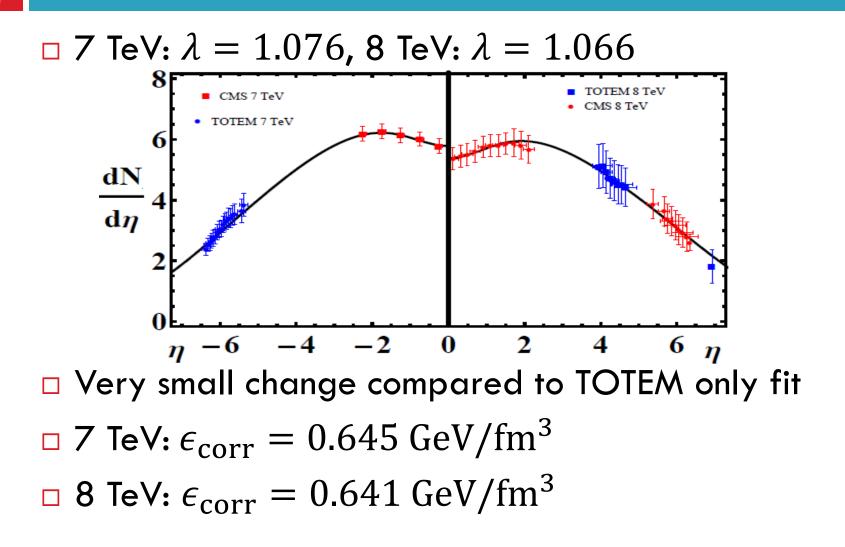
$$\epsilon_{\rm Bj}(7\,{\rm TeV}) = \frac{1}{R^2 \pi \tau_0} \frac{dE}{d\eta} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dn}{d\eta} = \frac{0.562 \times 1.5 \times 5.89}{1.76^2 \pi} \frac{{\rm GeV}}{{\rm fm}^3} = 0.507 \frac{{\rm GeV}}{{\rm fm}^3}$$

$$\epsilon_{\rm Bj}(8\,{\rm TeV}) = \frac{1}{R^2 \pi \tau_0} \frac{dE}{d\eta} = \frac{\langle E \rangle}{R^2 \pi \tau_0} \frac{dn}{d\eta} = \frac{0.571 \times 1.5 \times 6.17}{1.80^2 \pi} \frac{{\rm GeV}}{{\rm fm}^3} = 0.519 \frac{{\rm GeV}}{{\rm fm}^3}$$

Below critical? Important question!

Correction from initial acceleration

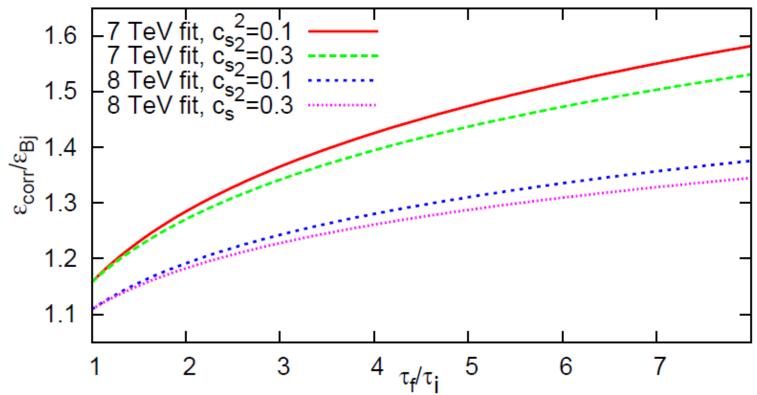

- 9
- Initial acceleration pushes outer volume elements
- \square This modifies the $dN/d\eta$ distribution
- Estimate acceleration
- $\square \lambda = 1$: no acceleration
- TOTEM fit
 - **D** 7 TeV: $\lambda = 1.073 \pm 0.001$
 - **B** TeV: $\lambda = 1.067 \pm 0.001$
- Corrected estimate:
 - **7** TeV: $\epsilon_{corr} = 0.640 \text{ GeV}/\text{fm}^3$
 - **8** TeV: $\epsilon_{corr} = 0.644 \text{ GeV}/\text{fm}^3$


Comment: $dN/d\eta$ @ LHC is not trivial

Not trivial for MC models

□ TOTEM Coll., EPL, 98 (2012) 31002

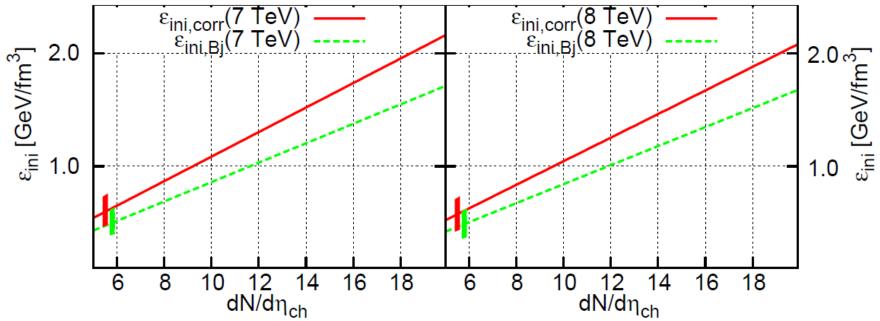
TOTEM & CMS data combined



Dependence on initial time speed of sound dependence

12

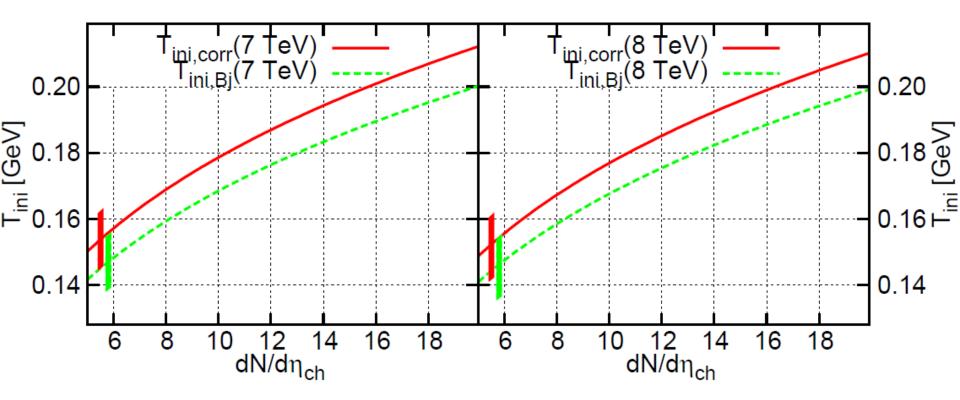
Recall the correction factor:


$$\epsilon_{\rm corr} = \epsilon_{\rm Bj} (2\lambda - 1) (\tau_f / \tau_i)^{(\lambda - 1)(2 - c_{\rm sound}^2)}$$

Dependence on multiplicity

- Several multiplicity classes, 6-20, even 40-50 seen!
- \Box Initial energy density estimate above 1 GeV/fm³, if:
 - **D** Bjorken estimate: $dN_{\rm ch}/d\eta > 12$

Corrected estimate: $dN_{\rm ch}/d\eta > 9$



Initial temperature estimate

 \Box Temperature from $\epsilon \sim T^4$

14

Values above 150-170 MeV reached

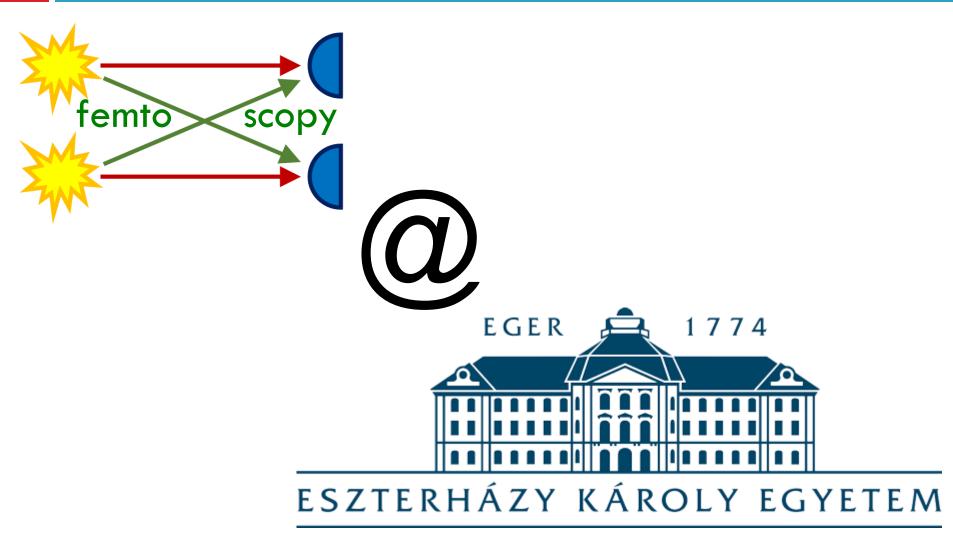
Systematic uncertainties

All sources of uncertainties at 7 TeV:

parameter	value	stat.	syst. eff. on ϵ
λ	1.073	0.1%	0.4% (from data)
c_s^2	0.1	-	$-2\% + 0.2\%$ (if $0.05 < c_s^2 < 0.5$)
$ au_f/ au_0$	2	-	-4%+10% (for τ_f / τ_0 in 1.5–4)
$\tau_0 \; [\mathrm{fm}/c]$	1	-	underestimates ϵ
R [fm]	1.766	-	$1.3\% \text{ (from } \sigma_{\text{tot}})$
$\langle E \rangle \; [\text{GeV}/c^2]$	0.562	0.5%	3%
$dN/d\eta~(7~{\rm TeV})$	5.895	0.2%	3%

Conclusion at 7 TeV:

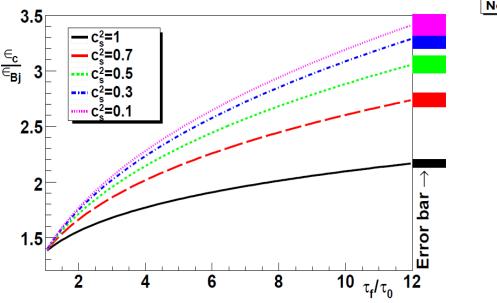
• $\epsilon_{\text{corr}} = (0.64 \pm 0.01(\text{stat})^{+0.14}_{-0.10}(\text{syst})) \text{ GeV/fm}^3$


Is it unprecedented? Consequences?

- Bjorken and Landau worked out hydro for pp and pA
- Success of hydro to describe h+p, with <n> = 7-8... Phys.Lett. B422 (1998) 359-368
- Bjorken: it is not hadrons that play billiard balling
- If p+p is a complex system:
 - Gamma/pi0 ratio
 - Radial flow
 - Elliptic flow, scaling
 - HBT radii, scaling
 - Low mass dilepton enhancement
 - Direct photon enhancement
- \square R_{AA} might not be the best measure: divide by length scale?

- Experimentally widely used Bjorken est. at 7-8 TeV
- \square Advanced estimate: acceleration work, from $dN/d\eta$
- □ From TOTEM and CMS data, approximately:
 - $\epsilon_{corr} = (0.64 \pm 0.01(stat) \pm 0.1(syst)) \text{ GeV/fm}^3$
 - This at dN/dy=6 & linearly rises with multiplicity, up to 60!
- □ Critical energy density: 1 GeV/fm³
- Not incompatible with sQGP phase in high multiplicity p+p

Thank you for your attention


Initial energy density at RHIC

- Bjorken estimate from BRAHMS: 5 GeV/fm³
- Advanced estimate aives:

Advanced estimate gives:
$$\varepsilon = \varepsilon_{Bj} (2\lambda - 1) \left(\frac{\tau_f}{\tau_i} \right)$$

Correction: 2-3x, result 15 GeV/fm³, QCD agreement

- Corresponds to $T_{ini} \cong 2T_c \cong 340 \text{ MeV}$
- Confirmed by photon spectra at PHENIX, published 2010

Reference e.g.: J.Phys.G35 (2008) <u>1041</u>28 (arXiv:0805.1562) Normalized pseudorapidity distributions from BRAHMS

 $(\lambda - 1)(2 - c_{\text{sound}}^2)$

Sources of uncertainties

- □ For the correction factor $\varepsilon/\varepsilon_{B_i}$:
 - \blacksquare Fit parameter λ
 - Statistical error (from the data)
 - Speed of sound c_s²
 - **Duration** $\tau_{\rm f}/\tau_{\rm i}$
- For the original Bjorken-estimate:
 - Main uncertainty source: multiplicity at midrapidity dN/dy
 - Area (if taken from cross-section): very precise
 - Formation time
 - Average transverse mass