
P. Koppenburg

Introduction to DaVinci

• Introduction
• overview of DaVinci structure

• My first DVAlgorithm
• we will loop over muons and plots some quantities

October 2009 Tutorial

Patrick Koppenburg

Introduction to DaVinci — October 2009 Tutorial – p. 1/28

http://www.koppenburg.org/address.html

P. Koppenburg

Applications

Gauss

(simulation)

Boole

(digitization)

Brunel

(reconstruction)

DaVinci

(analysis)

Gaudi -Applications

• There are four applications based on Gaudi

• They are actually all Gaudi -programs

• The only difference are the packages (shared libraries) included

• One could easily build an application that does it all (like in the old
SICB days. . .)

• Somewhere here Panoramix and Bender are missing

Introduction to DaVinci — October 2009 Tutorial – p. 2/28

P. Koppenburg

Applications

Gauss

(simulation)

Boole

(digitization)

Brunel

(reconstruction)

DaVinci

(analysis)

Gaudi -Applications

sim digi dst dst

Data

Introduction to DaVinci — October 2009 Tutorial – p. 2/28

P. Koppenburg

Projects

Gauss Boole Brunel Moore DaVinci Panoramix

LHCb

Gaudi

Externals

Lbcom Rec Phys Online Hlt Analysis

Introduction to DaVinci — October 2009 Tutorial – p. 3/28

P. Koppenburg

DaVinci Links
• DaVinci web page:

http://cern.ch/LHCb-release-area/DOC/davinci/

From there you’ll find :
• Some documentation. Links to doxygen .
• The Tutorial page

• Any DaVinci question can be asked at the DaVinci mailing list:
lhcb-davinci@cern.ch .

• That’s also the forum to propose improvements of DaVinci

• You need to be registered to use it. You can do that online.

• Distributed analysis question should be asked at
lhcb-distributed-analysis@cern.ch .

• General software questions should go to lhcb-soft-talk@cern.ch

Introduction to DaVinci — October 2009 Tutorial – p. 4/28

http://cern.ch/LHCb-release-area/DOC/davinci/
http://cern.ch/LHCb-release-area/DOC/davinci/
https://twiki.cern.ch/twiki/bin/view/LHCb/DaVinciTutorial
mailto:lhcb-davinci@cern.ch
mailto:lhcb-distributed-analysis@cern.ch
mailto:lhcb-soft-talk@cern.ch

P. Koppenburg

DaVinci

Introduction to DaVinci — October 2009 Tutorial – p. 5/28

P. Koppenburg

Warning
• We will use DaVinci v24r3

• It is a version all based on python
configurables

• There are (almost) no text options
(.opts) files anymore

➜ You don’t really need to know
about them

✗ Avoid using them. Even if your
supervisor tells you so.

Introduction to DaVinci — October 2009 Tutorial – p. 6/28

P. Koppenburg

ProtoParticles

Brunel

Tracks RICH ID Muon ID Calo ID

Charged
ProtoParticles

ProtoParticles

• are the end of the reconstruction stage

• are the starting point of the physics analysis

• have all the links about how they have been reconstructed

• have a list of PID hypothesis with a probability

• contain the kinematic information

Introduction to DaVinci — October 2009 Tutorial – p. 7/28

P. Koppenburg

ProtoParticles

Brunel

Tracks RICH ID Muon ID Calo ID

Charged
ProtoParticles

Neutral
ProtoParticles

ProtoParticles

• are the end of the reconstruction stage

• are the starting point of the physics analysis

• have all the links about how they have been reconstructed

• have a list of PID hypothesis with a probability

• contain the kinematic information

Introduction to DaVinci — October 2009 Tutorial – p. 7/28

P. Koppenburg

Particles

Brunel

Tracks RICH ID Muon ID Calo ID

Charged
ProtoParticles

DaVinci

Pions Kaons Muons Electrons Protons

Analysis

Introduction to DaVinci — October 2009 Tutorial – p. 8/28

P. Koppenburg

Particles

Brunel

Tracks RICH ID Muon ID Calo ID

Charged
ProtoParticles

Neutral
ProtoParticles

DaVinci

Charged (see before) Photons Merged π0

Analysis

Introduction to DaVinci — October 2009 Tutorial – p. 8/28

P. Koppenburg

Particles
• Particle = ProtoParticle + one PID choice

➜ one defined mass

• Physics analyses deal with Particles
• You need to know the 4-vectors to compute the mass of a resonance

• The PID is your choice
• The same ProtoParticle can be made as a π and as a µ. . .

◦ This makes sense. Think of a pion from B → ππ decaying in
flight. Does it stop being a signal pion because it decayed before
the Muon detector?

• Some ProtoParticles can be ignored
• All this is done by configuring a ParticleMaker algorithm

◦ You don’t need to worry about the configuration.
◦ Many standards are pre-defined
◦ But you need to choose which to use

➜ Next slide

Introduction to DaVinci — October 2009 Tutorial – p. 9/28

P. Koppenburg

Standard Particles
• The Particles are actually already done for you. To ensure that

everybody agrees on what is a K+, a π or a K0
S

, we have a set of
standard particles predefined.

• They are defined in python/CommonParticles/ * .py in the
Phys/CommonParticles package.

• All you need to know are the names of the algorithm that created them :
StdLooseKaons , StdTightProtons . . .

StdNoPIDsXxxx: All tracks are made to Xxxx

StdLooseXxxx: Loose PID cuts for hypothesis Xxxx (no cuts for pions)

StdTightXxxx: Tight PID cuts for hypothesis Xxxx

Introduction to DaVinci — October 2009 Tutorial – p. 10/28

P. Koppenburg

DVAlgorithm

Algorithms contain the algorithmic part to be executed at each event

What DaVinci does is defined by the algorithms that are called. An algorithm
is any class inheriting from Algorithm , which contains

• an initialize() method called at begin of job

• an execute() method called at each event

• a finalize() method called at end of job

To make life easier DaVinci contains a base-class DVAlgorithm that
provides many useful features.

• DVAlgorithm inherits from the base-class GaudiTupleAlg ,

• That inherits from GaudiHistoAlg ,

• That inherits from GaudiAlgorithm ,

• That inherits from Algorithm .

Introduction to DaVinci — October 2009 Tutorial – p. 11/28

http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_gaudi_tuple_alg.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_gaudi_histo_alg.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_gaudi_algorithm.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_algorithm.html

P. Koppenburg

My first DVAlgorithm :

• Create it

• Get some Particles

• Loop over them

• Make some histograms

This part is based on the Tutorial/Analysis package.
All can be found there.

Introduction to DaVinci — October 2009 Tutorial – p. 12/28

P. Koppenburg

Start to write the options
It’s a good idea to start with the options:

from Gaudi.Configuration import *
#

1) Let’s define a sequence

#

from Configurables import GaudiSequencer

tutorialseq = GaudiSequencer("TutorialSeq")

#

2) Create the Tutorial Algorithm

#

from Configurables import TutorialAlgorithm

tutalg = TutorialAlgorithm()

tutorialseq.Members += [tutalg]

• Then let’s start a sequence of algorithms with one algorithm inside.

Introduction to DaVinci — October 2009 Tutorial – p. 13/28

P. Koppenburg

Let’s write a new algorithm

In $ANALYSISROOTtype
> emacs src/TutorialAlgorithm. {cpp,h }

Emacs will ask you what you want to create. Answer (D) for DVAlgorithm
(twice) and you will get a template for a new algorithm that compiles nicely but
does nothing at all. (you actually need to modify the file to force Emacs to
save it)

Now go to cmt/ and recompile the package.

Introduction to DaVinci — October 2009 Tutorial – p. 14/28

P. Koppenburg

A look at the header file
#include "Kernel/DVAlgorithm.h"

class TutorialAlgorithm : public DVAlgorithm {

public:

/// Standard constructor

TutorialAlgorithm(const std::string& name, ISvcLocator * pSvcLocator);

virtual ˜TutorialAlgorithm(); ///< Destructor

virtual StatusCode initialize(); ///< Algorithm initiali zation

virtual StatusCode execute (); ///< Algorithm execution

virtual StatusCode finalize (); ///< Algorithm finalizati on

protected:

private:

};

• It inherits from DVAlgorithm , which provides the most frequently used tasks in a
convenient way.

• The constructor allows to initialise global variables (mandatory!) and to declare options.

• The three methods initialize() , execute() , finalize() control your algorithm.
Feel free to add more!

Introduction to DaVinci — October 2009 Tutorial – p. 15/28

P. Koppenburg

Execute
Let’s start with something easy

1. Take muons from the TES location where the particle maker algorithm
has put them

2. Loop on them

3. Plot their momentum and pT

4. Get the primary vertices

5. Plot the muons IP and IP significance

To get data from the TES we have a tool called the PhysDesktop

Introduction to DaVinci — October 2009 Tutorial – p. 16/28

P. Koppenburg

The PhysDesktop

The PhysDesktop is a tool that controls the loading and saving of the
particles that are currently used.

• It collects previously made particles

• It produces particles and saves them to the TES when needed

➜ It hides the interaction with the TES

To get the particles and vertices, do
const Particle::ConstVector& parts = desktop()->particl es();

const LHCb::RecVertex::Container * PVs = desktop()->primaryVertices();

const Vertex::ConstVector& verts = desktop()->secondary Vertices();

Practically no-one ever does the latter as one gets the Vertices from the
Particles .

Introduction to DaVinci — October 2009 Tutorial – p. 17/28

P. Koppenburg

Our execute() method

StatusCode TutorialAlgorithm::execute() {

debug() << "==> Execute" << endmsg;

StatusCode sc = StatusCode::SUCCESS ;

// code goes here

LHCb::Particle::ConstVector muons = desktop()->particl es();

sc = loopOnMuons(muons);

if (!sc) return sc;

setFilterPassed(true); // Set to true if event is accepted.

return StatusCode::SUCCESS;

}

• We get the particles from the PhysDesktop tool

• Then we pass them to a method that we have to write

Introduction to DaVinci — October 2009 Tutorial – p. 18/28

P. Koppenburg

Our new method
In the header file add:
private:

StatusCode loopOnMuons(const LHCb::Particle::ConstVec tor&)const ;

In the cpp file add:
//=== ===

// loop on muons

//=== ===

StatusCode TutorialAlgorithm::loopOnMuons(

const LHCb::Particle::ConstVector& muons)const {

StatusCode sc = StatusCode::SUCCESS ;

// code goes here

return sc ;

}

Introduction to DaVinci — October 2009 Tutorial – p. 19/28

P. Koppenburg

Our new method
In the method add:

for (LHCb::Particle::ConstVector::const_iterator im = m uons.begin() ;

im != muons.end() ; ++im){

plot((* im)->p(), "Muon P", 0., 50. * Gaudi::Units::GeV); // momentum

plot((* im)->pt(), "Muon Pt", 0., 5. * Gaudi::Units::GeV); // Pt

if (msgLevel(MSG::DEBUG)) debug() << "Mu Momentum: "

<< (* im)->momentum() << endmsg ;

}

• LHCb::Particle::ConstVector is a typedef
std::vector<LHCb::Particle * >

➜ Hence the non-intuitive (* im)->momentum() syntax

• The plot method allows to book histograms on demand.
• It returns a pointer to the histogram that you could also use directly

• There are many units defined in Gaudi::Units

• Look at the Particle class doxygen

Introduction to DaVinci — October 2009 Tutorial – p. 20/28

P. Koppenburg

Let’s get the primaries

In the method, before the muons loop, add:
const LHCb::RecVertex::Container * pvs = desktop()->primaryVertices();

In the muons loop add another loop
for (LHCb::RecVertex::Container::const_iterator ipv = p vs->begin() ;

ipv != pvs->end() ; ++ipv){

double IP, IPchi2;

if (msgLevel(MSG::DEBUG)) debug() << (* ipv)->position() << endmsg ;

sc = distanceCalculator()->distance((* im), (* ipv), IP, IPchi2);

if (sc){

plot(IP, "IP", "Muon IP", 0., 10. * Gaudi::Units::mm);

plot(IPchi2, "IPchi2", "Muon chi2 IP", 0., 10.);

if ((* im)->pt()>2 * Gaudi::Units::GeV)

plot(IP, "IP_2", "Muon IP for PT>2GeV", 0., 10. * Gaudi::Units::mm);

}

}

• The distanceCalculator() is a tool owned by DVAlgorithm
that allows to make geometry calculations.

Introduction to DaVinci — October 2009 Tutorial – p. 21/28

P. Koppenburg

Tools!
A look at the Doxygen web page shows that DVAlgorithm provides a lot of
functionality (not all listed here):

IPhysDesktop * desktop() const;
IVertexFit * vertexFitter() const;
IDistanceCalculator * distanceCalculator() const;
IParticleFilter * particleFilter() const;
ILifetimeFitter * lifetimeFitter() const
LHCb::IParticlePropertySvc * ppSvc() const;
ICheckOverlap * checkOverlap() const;
IParticleDescendants * descendants() const;
IBTaggingTool * flavourTagging() const;
StatusCode setFilterPassed(bool);
std::string getDecayDescriptor();

We will use some of them.

Introduction to DaVinci — October 2009 Tutorial – p. 22/28

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DOC/davinci/releases/latest/doxygen/d8/d37/class_d_v_algorithm.html

P. Koppenburg

Done!
• We have our algorithm

• Don’t forget to compile it

• We have our options
• Just need to tell the algorithm from where to get the muons
• They are made behind your back (by the DataOnDemandSvc)

tutalg.InputLocations = ["StdLooseMuons"]

This used to be
tutalg.addTool(PhysDesktop)}

tutalg.PhysDektop.InputLocation = [" Phys/StdLooseMuon s"]

This is deprecated. Correct it if you see it!

• We can run!
• We still need to configure our application
• And we need some data. . .

➜ We can get it from the Bookkeeping database

Introduction to DaVinci — October 2009 Tutorial – p. 23/28

P. Koppenburg

Feicim
1. In ganga do

data = browseBK()

2. Navigate to MC09, B field on,
velo closed, latest version of
everything

3. Select some data type with
muons

4. Save as python file

➜ This gives you a list of LFNs
that you can use to define an
LHCbDataset in ganga .

5. Or you could translate to PFNs

Introduction to DaVinci — October 2009 Tutorial – p. 24/28

P. Koppenburg

Configure DaVinci()

from Configurables import DaVinci

DaVinci().HistogramFile = "DVHistos_1.root" # Histogram file

DaVinci().EvtMax = 1000 # Number of events

DaVinci().DataType = "MC09" # Default anyway

DaVinci().Simulation = True # It’s MC

DaVinci().UserAlgorithms = [tutorialseq] # our sequence

• DaVinci() takes care of all the initialisations you don’t want to know
about.

• It makes different things depending on the type of input data (MC, 2006,
2008 . . .)

• It’s your job to tell DaVinci what you want to do

• It has a lot of other options . . .

Introduction to DaVinci — October 2009 Tutorial – p. 25/28

P. Koppenburg

DaVinci()
Application Configuration : sent to LHCbApp and Gaudi

DaVinci().EvtMax = -1 # Number of events to analyse

DaVinci().SkipEvents = 0 # Number of events to skip at beginn ing for file

DaVinci().PrintFreq = 100 # The frequency at which to print e vent numbers

DaVinci().DataType = ’MC09’ # Data type, can be [’DC06’,’20 08’,’2009’, ’MC09’] Forwarded to PhysConf

DaVinci().Simulation = True # set to True to use SimCond. For warded to PhysConf

DaVinci().DDDBtag = "default" # Tag for DDDB. Default as set in DDDBConf for DataType

DaVinci().CondDBtag = "default" # Tag for CondDB. Default a s set in DDDBConf for DataType

Input

DaVinci().Input = [] # Input data. Can also be passed as a seco nd option file.

Output

DaVinci().HistogramFile = "" # Write name of output Histogr am file

DaVinci().TupleFile = "" # Write name of output Tuple file

DaVinci().ETCFile = "" # Name of ETC file

Monitoring

DaVinci().MoniSequence = [] # Add your monitors here

DaVinci Options

DaVinci().MainOptions = "" # Main option file to execute

DaVinci().UserAlgorithms = [] # User algorithms to run.

DaVinci().RedoMCLinks = False # On some stripped DST one nee ds to redo the Track<->MC link table. Set

DaVinci().InputType = "DST" # or "DIGI" or "ETC" or "RDST" or "DST". Nothing means the input type

Trigger running

DaVinci().L0 = False # Run L0.

DaVinci().ReplaceL0BanksWithEmulated = False # Re-run L0

DaVinci().HltType = ’’ # HltType = No Hlt. Use Hlt1+Hlt2 to ru n Hlt

DaVinci().HltUserAlgorithms = [] # put here user algorithm s to add

DaVinci().Hlt2Requires = ’L0+Hlt1’ # Say what Hlt2 require s

DaVinci().HltThresholdSettings = ’’ # Use some special thr eshold settings, eg. ’Miriam_20090430’ or ’FEST’

Introduction to DaVinci — October 2009 Tutorial – p. 26/28

P. Koppenburg

Run!

P
Entries 11270

Mean 1.541e+04

RMS 1.181e+04

0 50001000015000200002500030000350004000045000500000

100

200

300

400

500 P
Entries 11270

Mean 1.541e+04

RMS 1.181e+04

0 500 1000150020002500300035004000450050000

50

100

150

200

250

300

350

400

450

Pt
Entries 11270

Mean 1456

RMS 1203

0 1 2 3 4 5 6 7 8 9 10

1

10

210

310

IP_2
Entries 5016

Mean 1.128

RMS 1.971

You can now run your job

This will produce a file DVHistos.root that you can inspect with root. It
contains the four histograms we have created in the algorithm.

Introduction to DaVinci — October 2009 Tutorial – p. 27/28

P. Koppenburg

Exercises!
Ex. 1: asks you to loop over muons and make some plots

• Everything you need is on the wiki page
• The main difficulty is to figure out what to copy-paste where.
• Don’t be afraid to ask if you are unsure

Ex. 2: Extend the algorithm to make a J/ψ (if you have time)

Ex. 3: Make your algorithm more generic: select also a φ (if you have time)

➜ Do Ex. 2 and 3 if you plan to develop C++ in DaVinci .

Ex. 4: The recommended way of writing a selection

➜ Talk by Juan on Wednesday

Ex. 5: Debugging

Ex. 6: MC truth, Trigger, Tagging, and much more

Ex. 7: More Tuples

Introduction to DaVinci — October 2009 Tutorial – p. 28/28

	darkcommon 	hetitle
	Applications
	Applications

	Projects
	DaVinci Links
	~
	Warning
	code {ProtoParticles}hypertarget {ProtoParticle}{}
	code {ProtoParticles}hypertarget {ProtoParticle}{}

	code {Particles}hypertarget {Particles}{}
	code {Particles}hypertarget {Particles}{}

	code {Particles}hypertarget {Particle}{}
	Standard Particles
	DVAlgorithm
	~
	Start to write the options
	Let's write a new algorithm
	A look at the header file
	{lightcommon Executehypertarget {Execute}{}}
	The code {PhysDesktop}hypertarget {PhysDesktop}{}
	Our code {execute()} method
	Our new method
	Our new method
	Let's get the primaries
	Tools!
	Done!
	Feicim
	Configure code {DaVinci()}
	code {DaVinci()}
	Run!
	Exercises!

