Iﬁtrodthi_QQ to DaVinci

L .

Ay g% _._R"'tr.
B : _'-lr i rl
L_".E' : 3.- = "":’_

® |ntroduction
® overview of DaVinci structure

® My first DVAlgorithm
¢ we will loop over muons and plots some guantities

October 2009 Tutorial

Patrick Koppenburg
N
NIpS@EeF

P. Koppenburg Introduction to DaVinci — October 2009 Tutorial — p. 1/28

http://www.koppenburg.org/address.html

Applications

Gaudi-Applications

Gauss Boole Brunel DaVinci

(simulation) (digitization) (reconstruction) (analysis)

® There are four applications based on Gaudi
® They are actually all Gaudi-programs
® The only difference are the packages (shared libraries) included

® One could easily build an application that does it all (like in the old
SICB days...)

Somewhere here Panoramix and Bender are missing

Applications

Gaudi-Applications

Gauss Boole Brunel DaVinci

(simulation) (digitization) (reconstruction) (analysis)

Projects

Gauss Boole Brunel Moore DaVinci Panoramix

S
]

Online Analysis

1 [
THCD

DaVinci Links

® DaVinci web page:
http://cern.ch/LHCDb-release-area/DOC/davinci/
From there you'll find :
® Some documentation. Links to doxygen .

® The Tutorial page

® Any DaVinci question can be asked at the DaVinci mailing list:
lhcb-davinci@cern.ch .

® That’s also the forum to propose improvements of DaVinci
® You need to be registered to use it. You can do that online.

® Distributed analysis question should be asked at
Ihcb-distributed-analysis@cern.ch .

® (General software questions should go to Ihcb-soft-talk@cern.ch

http://cern.ch/LHCb-release-area/DOC/davinci/
http://cern.ch/LHCb-release-area/DOC/davinci/
https://twiki.cern.ch/twiki/bin/view/LHCb/DaVinciTutorial
mailto:lhcb-davinci@cern.ch
mailto:lhcb-distributed-analysis@cern.ch
mailto:lhcb-soft-talk@cern.ch

DaVinci

Introduction to DaVinci — October 2009 Tutorial — p. 5/28

Warning \

iig P SANSRES
¥
il

1 [
Y“Cp

Introduction to DaVinci — October 2009 Tutorial — p. 6/28

ProtoParticles

-
’ s
' 4 ¢'
.

’l
s
V A' -

="
Charged
ProtoParticles
Brunel

ProtoParticles

® are the end of the reconstruction stage

® are the starting point of the physics analysis

® have all the links about how they have been reconstructed
have a list of PID hypothesis with a probability

contain the kinematic information

ProtoParticles

~ S Y 4 -
l\ N

Charged Neutral

ProtoParticles ProtoParticles
Brunel

ProtoParticles

® are the end of the reconstruction stage

® are the starting point of the physics analysis

® have all the links about how they have been reconstructed
have a list of PID hypothesis with a probability

contain the kinematic information

Particles

Charged
ProtoParticles

Muons Electrons Protons

-’ ’

\ Yo \’, ’

N\ i ‘—’

~ 'l
DaVinci
HC U
RGP

Particles

Charged Neutral
ProtoParticles ProtoParticles

Charged (see before) Photons Merged 7Y

\ ! 4
) S 4 ’

N _”
DaVinci

1 [
TG

Particles

e Particle = ProtoParticle + one PID choice
[] one defined mass

® Physics analyses deal with Particles
® You need to know the 4-vectors to compute the mass of a resonance

® The PID is your choice

® The same ProtoParticle can be made asam and as a p. ..
o This makes sense. Think of a pion from B — 7w decaying in
flight. Does it stop being a signal pion because it decayed before
the Muon detector?

* Some ProtoParticles can be ignored

e All this is done by configuring a ParticleMaker algorithm
o You don’t need to worry about the configuration.
o Many standards are pre-defined
o But you need to choose which to use
[Next slide

Standard Particles

e The Particles are actually already done for you. To ensure that

everybody agrees on whatisa K, a 7 or a Kg, we have a set of
standard particles predefined.

e They are defined in python/CommonParticles/ *.py inthe
Phys/CommonParticles package.

® All you need to know are the names of the algorithm that created them :
StdLooseKaons , StdTightProtons

StdNoPIDsXxxx: All tracks are made to XXXX

StdLooseXxxx: Loose PID cuts for hypothesis XxXXX (no cuts for pions)
StdTightXxxx: Tight PID cuts for hypothesis XXXX

DVAIgorithm

Algorithms contain the algorithmic part to be executed at each event |

What DaVinci does is defined by the algorithms that are called. An algorithm
is any class inheriting from Algorithm |, which contains

¢ an initialize() method called at begin of job
e anexecute() method called at each event
¢ afinalize() method called at end of job

To make life easier DaVinci contains a base-class DVAlgorithm that
provides many useful features.

e DVAlgorithm inherits from the base-class GaudiTupleAlg
e That inherits from GaudiHistoAlg

® That inherits from GaudiAlgorithm |

® That inherits from Algorithm

http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_gaudi_tuple_alg.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_gaudi_histo_alg.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_gaudi_algorithm.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/latest/doxygen/class_algorithm.html

My first DVAlgorithm

Create it
Get some Particles
Loop over them

Make some histograms

This part is based on the Tutorial/Analysis package.
All can be found there.

Introduction to DaVinci — October 2009 Tutorial — p. 12/28

Start to write the options

It's a good idea to start with the options:

from Gaudi.Configuration import *
#

1) Let's define a sequence

#

from Configurables import GaudiSequencer
tutorialseq = GaudiSequencer("TutorialSeq")
#

2) Create the Tutorial Algorithm

#

from Configurables import TutorialAlgorithm
tutalg = TutorialAlgorithm()
tutorialseg.Members += [tutalg]

® Then let's start a sequence of algorithms with one algorithm inside.

Let’'s write a new algorithm

In SANALYSISROOType
> emacs src/TutorialAlgorithm. {cpp,h }

Emacs will ask you what you want to create. Answer (D) for DVAlgorithm
(twice) and you will get a template for a new algorithm that compiles nicely but
does nothing at all. (you actually need to modify the file to force Emacs to
save It)

Now go to cmt/ and recompile the package.

A look at the header file

#include "Kernel/DVAlgorithm.h"
class TutorialAlgorithm : public DVAlgorithm {
public:
/[l Standard constructor
TutorialAlgorithm(const std::string& name, ISvcLocator * pSvclLocator);
virtual “TutorialAlgorithm(); /l/< Destructor
virtual StatusCode initialize(); /ll/< Algorithm initiali zation
virtual StatusCode execute 0; /< Algorithm execution
virtual StatusCode finalize (); /ll/< Algorithm finalizati on
protected:
private:
I

e [t inherits from DVAIgorithm , which provides the most frequently used tasks in a
convenient way.

® The constructor allows to initialise global variables (mandatory!) and to declare options.

¢ The three methods initialize() , execute() , finalize() control your algorithm.
Feel free to add more!

Execute

Let’s start with something easy

1. Take muons from the TES location where the particle maker algorithm
has put them

Loop on them
Plot their momentum and pt

Get the primary vertices

a k~ w0 D

Plot the muons IP and IP significance

To get data from the TES we have a tool called the PhysDesktop

The PhysDesktop

The PhysDesktop s a tool that controls the loading and saving of the
particles that are currently used.

® |t collects previously made particles

® |t produces particles and saves them to the TES when needed

B It hides the interaction with the TES

To get the particles and vertices, do

const Particle::ConstVector& parts = desktop()->particl es();
const LHCb::RecVertex::Container * PVs = desktop()->primaryVertices();
const Vertex::ConstVector& verts = desktop()->secondary Vertices();

Practically no-one ever does the latter as one gets the Vertices from the
Particles

Our execute() method

StatusCode TutorialAlgorithm:.execute() {
debug() << "==> Execute" << endmsg;
StatusCode sc = StatusCode::SUCCESS ;

/[code goes here

LHCDb::Particle::ConstVector muons = desktop()->particl
sc = loopOnMuons(muons);

if (Isc) return sc;

setFilterPassed(true); /[Set to true if event is accepted.
return StatusCode::SUCCESS;

es();

¢ \We get the particles from the PhysDesktop tool

® Then we pass them to a method that we have to write

Our new method

In the header file add:

private:
StatusCode loopOnMuons(const LHCDb::Particle::ConstVec

tor&)const ;

In the cpp file add:

StatusCode TutorialAlgorithm::loopOnMuons(
const LHCD::Particle::ConstVector& muons)const {

StatusCode sc = StatusCode::SUCCESS :

/[code goes here

return sc ;

Our new method

In the method add:

for (LHCb::Particle::ConstVector::const_iterator im = m uons.begin() ;
im != muons.end() ; ++im){
plot((*im)->p(), "Muon P", 0., 50. * Gaudi::Units::GeV); // momentum
plot((*im)->pt(), "Muon Pt", 0., 5. * Gaudi::Units::GeV); /I Pt

if (msgLevelMSG::DEBUG)) debug() << "Mu Momentum: "
<< (*im)->momentum() << endmsg ;

e | HCD::Particle::ConstVector is a typedef
std::vector<LHCb::Particle * >

[] Hence the non-intuitive (* Im)->momentum() syntax

e The plot method allows to book histograms on demand.
® It returns a pointer to the histogram that you could also use directly

There are many units defined in Gaudi::Units
Look at the Particle class doxygen

Let’'s get the primaries

In the method, before the muons loop, add:

const LHCb::RecVertex::Container * pvs = desktop()->primaryVertices();

In the muons loop add another loop

for (LHCb::RecVertex::Container:.const_iterator ipv = p vs->begin() ;
ipv = pvs->end() ; ++ipv){
double IP, IPchi2;

if (msgLevel(MSG::DEBUG)) debug() << (* [pv)->position() << endmsg ;
sc = distanceCalculator()->distance((*im), (*ipv), IP, IPchi2);
if (scq

plot(IP, "IP", "Muon IP", 0., 10. * Gaudi::Units::mm);

plot(IPchi2, "IPchi2", "Muon chi2 IP", 0., 10.);
if ((*im)->pt)>2 *Gaudi::Units::GeV)
plot(IP, "IP_2", "Muon IP for PT>2GeV", 0., 10. * Gaudi::Units::mm);
}
}

e The distanceCalculator() is a tool owned by DVAlgorithm

A look at the Doxygen web page shows that DVAlgorithm provides a lot of

functionality (not all listed here):

IPhysDesktop =* desktop() const;
IVertexFit * vertexFitter() const;

IDistanceCalculator * distanceCalculator() const;
|ParticleFilter * particleFilter() const;
ILifetimeFitter * lifetimeFitter() const
LHCb::IParticlePropertySvc * ppSvc() const;
ICheckOverlap * checkOverlap() const;
|IParticleDescendants * descendants() const;

IBTaggingTool =* flavourTagging() const;
StatusCode setFilterPassed(bool);
std::string getDecayDescriptor();

We will use some of them.

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DOC/davinci/releases/latest/doxygen/d8/d37/class_d_v_algorithm.html

® \We have our algorithm
® Don't forget to compile it

® \We have our options
® Just need to tell the algorithm from where to get the muons
* They are made behind your back (by the DataOnDemandSvc)

tutalg.InputLocations = ["StdLooseMuons" |

This used to be
tutalg.addTool(PhysDesktop)}
tutalg.PhysDektop.InputLocation = [* Phys/StdLooseMuon s"]

This is deprecated. Correct it if you see it!

® \We can run!

® We still need to configure our application

®* And we need some data. ..

5 [1 We can get it from the Bookkeeping database

Feicim

data =

In ganga do
browseBK()

Navigate to MCO09, B field on,
velo closed, latest version of

everything

Select some data type with

muons

Save as python file

This gives you a list of LFNs
that you can use to define an

LHCbDataset

Or you could translate to PFNs

In ganga.

|« Standard | Advanced Queries

Tree

Description

- Queries

[
[
[

- £ LHCb Physicsntp
. ‘B2 LHCh Physicstp
. ‘£2 LHCh Physicstp_lcmsonly
. E2 LHCb Physicstp_low
. ‘§2 LHChb Physicstp_mcmsonly
- ‘§2 LHCb Physicstp_nocms
- £ LHCb Test
- £ LHCb Test|vfs400_notp
. ‘B2 LHChb Test|vfs400_tpall
. ‘B2 LHCb Ttcrxscan
- B MC 2007
- By MC 2008
@ Simulaton Conditions/DataTaking
- 2 Beam450CeV-VeloOpen-BfieldZero
- [Beam5TeV-VeloOpen-BfieldNeg
- [Beam5TeV-VeloOpen-BfieldZero
- [Beam7TeV-EfieldNeg
- [B» Beam7TeV-VeloClosed-EfieldNeg
- @@ Processing Pass
B By MCOB-Sim-Reco_v33

- &2 11114001
- B2 11164401
- &2 12165103
- &2 13102002
- B 13102201
- B 13112001
- B 13144002

- £ DIGI
- By DST

. Nb of Files/Events

[9/4482

- B3 SIM
0 B 13154002
0 £ 24142001
5. £ 30000000

- £ ParticuleGun
A 5 MO 2008-HT

Bd_Kstmumu=DecProdCut
Bd_D-rho+=DecProdCut
Bu_DOK,KSpipi=CPV,DecPra
Bs_K+K-=CPV,DecProdCut
Bs_phigamma=DecProdCut
Bs_mumu=DecProdCut
Bs_Jpsiphi,mm=CPV,DecPro

Bs_Jpsiphi,ee=CPV,DecProd
incl_jpsi,mm=DecProdCut
minbias

@ SimCond/ProcessingPass/Eventtype/Production/FileType /Program,

._|1|

Configure DaVinci()

from Configurables import DaVinci
DaVinci().HistogramFile = "DVHistos 1.root" # Histogram file

DaVinci().EvtMax = 1000 # Number of events
DaVinci().DataType = "MC09" # Default anyway
DaVinci().Simulation = True # I's MC
DaVinci().UserAlgorithms = [tutorialseq] # our sequence

e DaVinci() takes care of all the initialisations you don’t want to know
about.

® |t makes different things depending on the type of input data (MC, 2006,
2008 ...)

® |t’'s your job to tell DaVinci what you want to do

It has a lot of other options ...

DaVinci()

= 'LO+HItY

Say what HIt2 require S

Application Configuration : sent to LHCbApp and Gaudi

DaVinci().EvtMax = -1 # Number of events to analyse

DaVinci().SkipEvents = 0 # Number of events to skip at beginn ing for file

DaVinci().PrintFreq = 100 # The frequency at which to print e vent numbers

DaVinci().DataType = 'MC09’ # Data type, can be ['DCO06’,'20 08’,’2009’, 'MC09’] Forwarded to Phy

DaVinci().Simulation = True # set to True to use SimCond. For warded to PhysConf

DaVinci().DDDBtag = "default" # Tag for DDDB. Default as set in DDDBConf for DataType

DaVinci().CondDBtag = "default" # Tag for CondDB. Default a s set in DDDBConf for DataType

Input

DaVinci().Input = # Input data. Can also be passed as a seco nd option file.

Output

DaVinci().HistogramFile =" # Write name of output Histogr am file

DaVinci(). TupleFile =" # Write name of output Tuple file

DaVinci().ETCFile =" # Name of ETC file

Monitoring

DaVinci().MoniSequence =] # Add your monitors here

DaVinci Options

DaVinci().MainOptions =™ # Main option file to execute

DaVinci().UserAlgorithms = # User algorithms to run.

DaVinci().RedoMCLinks = False # On some stripped DST one nee ds to redo the Track<->MC link table.

DaVinci().InputType = "DST" # or "DIGI" or "ETC" or "RDST" or "DST". Nothing means the input

Trigger running

DaVinci().LO = False # Run LO.

DaVinci().ReplaceLOBanksWithEmulated = False # Re-run LO

DaVinci().HItType =" # HItType = No HIt. Use HIt1+HIt2 to ru n Hit
yjnci().HItUserAlgorithms = [] # put here user algorithm s to add

).HItThresholdSettings =_" i "Miri ' '

You can now run your job

: .H, Entries 11270 450 :_‘}. Entries 11270
| “ | Mean 1.541e+04 400 E_T Mean 1456
400__ ! .\+ RMS 118le+04 E i‘ RMS 1203
350K 't
J al
- \T F
s00p | 300¢ 4
| 4 o
1 250F ¢
L % E Wi
of % oo ¥
i : g wh
+‘.‘:“:'1~lﬁl‘.} 150F- 'l‘ﬁ‘:“lg&; e
100 ‘ﬂﬁ*&m | 100F L X
- %'emes % C o e .
Y T 50F ﬁ‘ﬂ"‘*:’.‘#ﬁﬂm y
5 TP i RSN
||||||||||||||||||||||||||||||||||| Illllrllll _||||||||||||||||||||I|||||||||I||||I||||I|.|||

50001000(]1500QOOOQ50060008500@000@50060000 500 100015002000250030003500400045005000

10°

10?

10E

This will produce a file DVHistos.root that you can inspect with root. It
contains the four histograms we have created in the algorithm.

. P 2
p® Entries 5016
g
Mean 1.128
|]
* RMS 1.971
R !
W,
L]
L iy
E % :'*“h—iw
LY R TN
® Uil WL WY T
™ T L W e
10 ie) | | l\‘la \.“H\ L
Tl e 17 o e . RPN TR VY
T Tee 1ol @ e | e L
| T\”TL'LT\".“.-”W"-‘\ oo “'ﬁ'.‘ [T TR
4 o el flelle fille il I e 1Y o]
ol T e TR o e
I AR L GATTIBRIA S
e T
III

EX.
¢

=¢

Exercises!

2.
5

Ex. 1: asks you to loop over muons and make some plots

® Everything you need is on the wiki page
® The main difficulty is to figure out what to copy-paste where.
® Don'’t be afraid to ask if you are unsure

Extend the algorithm to make a J /4 (if you have time)

Make your algorithm more generic: select also a ¢ (if you have time)
Do Ex. 2 and 3 if you plan to develop C++ in DaVinci.

The recommended way of writing a selection
Talk by Juan on Wednesday

Debugging
MC truth, Trigger, Tagging, and much more

More Tuples

	darkcommon 	hetitle
	Applications
	Applications

	Projects
	DaVinci Links
	~
	Warning
	code {ProtoParticles}hypertarget {ProtoParticle}{}
	code {ProtoParticles}hypertarget {ProtoParticle}{}

	code {Particles}hypertarget {Particles}{}
	code {Particles}hypertarget {Particles}{}

	code {Particles}hypertarget {Particle}{}
	Standard Particles
	DVAlgorithm
	~
	Start to write the options
	Let's write a new algorithm
	A look at the header file
	{lightcommon Executehypertarget {Execute}{}}
	The code {PhysDesktop}hypertarget {PhysDesktop}{}
	Our code {execute()} method
	Our new method
	Our new method
	Let's get the primaries
	Tools!
	Done!
	Feicim
	Configure code {DaVinci()}
	code {DaVinci()}
	Run!
	Exercises!

