
33

Job Options and PrintingJob Options and Printing

CERN Tutorial, October 2009

Job OptionsJob Options

•• All applications run the same main programAll applications run the same main program
((gaudirun.pygaudirun.py))

•• Job options define what to run, in what order, Job options define what to run, in what order,
with what data, with what cutswith what data, with what cuts

•• All applications run the same main programAll applications run the same main program
((gaudirun.pygaudirun.py))

•• Job options define what to run, in what order, Job options define what to run, in what order,
with what data, with what cutswith what data, with what cuts

3-2 CERN Tutorial, October 2009

with what data, with what cutswith what data, with what cuts

•• Similar to “cards” files in old Fortran Similar to “cards” files in old Fortran
frameworksframeworks

•• Accessed through Accessed through IJobOptionsSvcIJobOptionsSvc interfaceinterface
– Details hidden from users by the framework

with what data, with what cutswith what data, with what cuts

•• Similar to “cards” files in old Fortran Similar to “cards” files in old Fortran
frameworksframeworks

•• Accessed through Accessed through IJobOptionsSvcIJobOptionsSvc interfaceinterface
– Details hidden from users by the framework

Job Options
Typically every analysis job is steered by a cards file. Cards historically were real cards, meaning punch cards used to pass parameters from some input device to the program.

Gaudi uses the same mechanism, by reading in one or more Job Options files. These files were foreseen as a temporary solution. In the long run, all job options might be stored in a database, which would facilitate manipulation of e.g. different production settings. Another future development that is foreseen is to code the job options in python.

The job options are accessed by the framework using a special service, which exposes the IJobOptionsSvc interface. Because of this separation, only the service will need to be changed if the options are moved to a database or to python scripts.

Job Options: Data TypesJob Options: Data Types
PrimitivesPrimitives

– bool, char, short, int, (long, long long), float, double,
std::string

– And unsigned char, short, int, (long, long long)

Vectors of primitivesVectors of primitives
– std::vector<bool>, std::vector<double>...

PrimitivesPrimitives
– bool, char, short, int, (long, long long), float, double,

std::string
– And unsigned char, short, int, (long, long long)

Vectors of primitivesVectors of primitives
– std::vector<bool>, std::vector<double>...

3-3 CERN Tutorial, October 2009

– std::vector<bool>, std::vector<double>...

Pairs, Maps
– e.g. std::pair<int,int>, std::map<std::string,double>

– std::vector<bool>, std::vector<double>...

Pairs, Maps
– e.g. std::pair<int,int>, std::map<std::string,double>

The full list of possible types is documented at:
http://cern.ch/proj-gaudi/releases/latest/doxygen/_parsers_8h.html

Job Options: Data Types
Objects like algorithms and services can retrieve options of several data types from the job option file. These are primitive options like bools, doubles etc. and arrays of those.

Declare the property in the Declare the property in the ConstructorConstructor, and , and Declare the property in the Declare the property in the ConstructorConstructor, and , and

Declare property variable as data memberDeclare property variable as data member
class class MyFirstAlgorithmMyFirstAlgorithm : public : public GaudiAlgorithmGaudiAlgorithm {{
private:private:
double double m_m_jPsiMassWinjPsiMassWin;;
......

};};

Declare property variable as data memberDeclare property variable as data member
class class MyFirstAlgorithmMyFirstAlgorithm : public : public GaudiAlgorithmGaudiAlgorithm {{
private:private:
double double m_m_jPsiMassWinjPsiMassWin;;
......

};};

Using Job OptionsUsing Job Options

LHCb convention for member dataLHCb convention for member data

3-4 CERN Tutorial, October 2009

Declare the property in the Declare the property in the ConstructorConstructor, and , and
initialize it with a default valueinitialize it with a default value
MyFirstAlgorithmMyFirstAlgorithm::::MyFirstAlgorithmMyFirstAlgorithm(<(<argsargs>) >)
{{

declarePropertydeclareProperty((“MassWindow",

m_jPsiMassWin = 0.5*Gaudi::Units::GeV,

“The J/Psi mass window cut”);
}

Declare the property in the Declare the property in the ConstructorConstructor, and , and
initialize it with a default valueinitialize it with a default value
MyFirstAlgorithmMyFirstAlgorithm::::MyFirstAlgorithmMyFirstAlgorithm(<(<argsargs>) >)
{{

declarePropertydeclareProperty((“MassWindow",

m_jPsiMassWin = 0.5*Gaudi::Units::GeV,

“The J/Psi mass window cut”);
}

Variable, initialized to default valueVariable, initialized to default value

Documentation string, useful from PythonDocumentation string, useful from Python

Property name, used in job options fileProperty name, used in job options file

Using Job Options
Optional parameters of an algorithm are part of the algorithm itself. In C++ they are typically implemented as member variables.
However, the framework must be made aware that a given algorithm has a certain property and that the value of this property may be changed.
Property defaults may sometimes be useful. However, if a default value can not ensure proper behavior, it may be better to require external input.

Set options in job options fileSet options in job options file

– File path(s) given as argument(s) of executable
gaudirun.py ../options/myJob.py [also .opts]gaudirun.py ../options/myJob.py [also .opts]

– Python syntax

Set options in job options fileSet options in job options file

– File path(s) given as argument(s) of executable
gaudirun.py ../options/myJob.py [also .opts]gaudirun.py ../options/myJob.py [also .opts]

– Python syntax

Setting Job OptionsSetting Job Options

3-5 CERN Tutorial, October 2009

– Type checking
– Expressions, if-then-else, loops etc.
– Early Validation of configuration

– Example
MyFirstAlgorithm(“Alg1”).MassWindow = 10.* GeV
MyFirstAlgorithm(“Alg2”).MassWindow = 500. # Default is MeV

Class(“ObjectName”).PropertyName = PropertyValue

– Type checking
– Expressions, if-then-else, loops etc.
– Early Validation of configuration

– Example
MyFirstAlgorithm(“Alg1”).MassWindow = 10.* GeV
MyFirstAlgorithm(“Alg2”).MassWindow = 500. # Default is MeV

Class(“ObjectName”).PropertyName = PropertyValue

Set Job Options
The job options file itself is passed to the executable as the first argument.
The job options have python. This means in particular
A property of an algorithm is addressed using the following syntax:�	<class name>(“object-name”).<option-name> = <value>
Any option is NOT terminated by a semi-colon.
Strings are enclosed in double quotes (“value”).
Arrays of options are enclosed in square brackets. Example: SomeAlg().SomeOpt = [1, 2, 3, 5, 6]
Job options are assigned to an object according to the name of the instance, not at the level of the class.

• Distinguish job options that organise
sequencing of algorithms in LHCb applications:

• From options that change the behaviour of

• Distinguish job options that organise
sequencing of algorithms in LHCb applications:

• From options that change the behaviour of

MCITDepCreator = MCSTDepositCreator(“MCITDepCreator“)
ApplicationMgr().TopAlg += [MCITDepCreator]
MCITDepCreator = MCSTDepositCreator(“MCITDepCreator“)
ApplicationMgr().TopAlg += [MCITDepCreator]

Types of job optionsTypes of job options

3-6 CERN Tutorial, October 2009

• From options that change the behaviour of
algorithms and tools:

• From options that change the behaviour of
algorithms and tools:

MCITDepCreator.tofVector = [25.9, 28.3, 30.5]

TheITTool = STSignalToNoiseTool(“STSignalToNoiseToolIT”)
TheITTool.conversionToADC = 0.0015;

MCITDepCreator.tofVector = [25.9, 28.3, 30.5]

TheITTool = STSignalToNoiseTool(“STSignalToNoiseToolIT”)
TheITTool.conversionToADC = 0.0015;

• Job options that organize the sequencing of
algorithms are tagged and released with the
application (typically in xxSys packages)

– These are increasingly replaced by “ConfigurableUser” classes
(e.g. Brunel(), DaVinci()). See Configurables tutorial

• Options that change the behaviour of algorithms
and tools should be initialized to sensible

• Job options that organize the sequencing of
algorithms are tagged and released with the
application (typically in xxSys packages)

– These are increasingly replaced by “ConfigurableUser” classes
(e.g. Brunel(), DaVinci()). See Configurables tutorial

• Options that change the behaviour of algorithms
and tools should be initialized to sensible

LHCb conventions for job optionsLHCb conventions for job options

3-7 CERN Tutorial, October 2009

and tools should be initialized to sensible
defaults in the .cpp

– If needed, any options different from the defaults (e.g. if there are
several instances of the same algorithm with different tunings) are
taken from files stored in the corresponding component packages

and tools should be initialized to sensible
defaults in the .cpp

– If needed, any options different from the defaults (e.g. if there are
several instances of the same algorithm with different tunings) are
taken from files stored in the corresponding component packages

.opts files can be included (“imported”) into python options.opts files can be included (“imported”) into python options

importOptions("$STALGORITHMSROOT/options/itDigi.opts“)importOptions("$STALGORITHMSROOT/options/itDigi.opts“)

LHCb: Conventions
LHCb applications configure the job by setting up the processing sequences for the algorithms. Any algorithm specific options are delegated to the algorithm packages.

ApplicationMgr().EvtMax <integer>ApplicationMgr().EvtMax <integer>

Job Options You Must KnowJob Options You Must Know

Maximal number of events to execute
(if -1 all events in input files)

Maximal number of events to execute
(if -1 all events in input files)

3-8 CERN Tutorial, October 2009

Top level algorithms to run: Type(“Name”)
e.g.: [MyFirstAlgorithm(“Alg1”), MyFirstAlgorithm(“Alg2”)]

Also defines the execution order

Top level algorithms to run: Type(“Name”)
e.g.: [MyFirstAlgorithm(“Alg1”), MyFirstAlgorithm(“Alg2”)]

Also defines the execution order

ApplicationMgr().TopAlg <List of configurables>ApplicationMgr().TopAlg <List of configurables>

Job Options You Must Know
These options are essential in any job. During the tutorial other options will be introduced as well, which you should add to this list to be kept in (brain-)memory.

PrintingPrinting

Why not use std::Why not use std::coutcout, std::, std::cerrcerr, ... ?, ... ?

• Yes, it prints, but
– Do you always want to print to the log file?

– How can you connect std::cout to the message

Why not use std::Why not use std::coutcout, std::, std::cerrcerr, ... ?, ... ?

• Yes, it prints, but
– Do you always want to print to the log file?

– How can you connect std::cout to the message

3-9 CERN Tutorial, October 2009

– How can you connect std::cout to the message
window of an event display?

– How can you add a timestamp to the messages?

– You may want to switch on/off printing at several
levels just for one given algorithm, service etc.

– How can you connect std::cout to the message
window of an event display?

– How can you add a timestamp to the messages?

– You may want to switch on/off printing at several
levels just for one given algorithm, service etc.

Printing
Print statements are a very useful way to document checkpoints within a running program. �C++ by itself implements three standard output streams, which in practice all go to the terminal output:
std::cout, the standard output destination
std::cerr, for logging errors
std::clog, for debugging
These printout destinations however have some disadvantages
They all go to log files, a more fine grained specification of the destination is not possible.
Although possible it is e.g. not too obvious how to redirect output properly e.g. to an error logger display in the online environment.
You may want to switch on debug printing
For the algorithm/service you want to debug and you do not want to get flooded by all the printouts of other algorithms
You want to globally adjust the level of severity for printout.

To summarize, there are quite some reasons why the standard printing may not be entirely adequate.

Printing - MsgStreamPrinting - MsgStream

Using the Using the MsgStreamMsgStream classclass
• Usable like std::cout
• Allows for different levels of printing

– MSG::VERBOSE (=1)
– MSG::DEBUG (=2)
– MSG::INFO (=3)

Using the Using the MsgStreamMsgStream classclass
• Usable like std::cout
• Allows for different levels of printing

– MSG::VERBOSE (=1)
– MSG::DEBUG (=2)
– MSG::INFO (=3)

3-10 CERN Tutorial, October 2009

– MSG::INFO (=3)
– MSG::WARNING (=4)
– MSG::ERROR (=5)
– MSG::FATAL (=6)
– MSG::ALWAYS (=7)

• Record oriented
• Allows to define severity level per

object instance

– MSG::INFO (=3)
– MSG::WARNING (=4)
– MSG::ERROR (=5)
– MSG::FATAL (=6)
– MSG::ALWAYS (=7)

• Record oriented
• Allows to define severity level per

object instance

Printing - MsgStream
The alternative to using the default print streams defined by C++ is a Gaudi extension, the MsgStream. The usage of this class should be the same as for the standard streams. The MsgStream however, allows to specify more fine grained severity levels:
Verbose, Debug, Informational, Warning, Error and Fatal levels. Always is reserved for informational messages that should always be printed.
Secondly, printout of the MsgStream class is record oriented, not line oriented like for the C++ output streams. Standard output streams print whenever a newline character appears. The MsgStream prints on the occurrence of an end-record specifier. A record may contain several lines of output.
MsgStream objects allow to define the severity level based on the name of an object instance. This feature allows to enable printouts for one single algorithm while suppressing extensive printout for others.

MsgStream - UsageMsgStream - Usage

Print error and return bad statusPrint error and return bad statusPrint error and return bad statusPrint error and return bad status

Send to predefined message streamSend to predefined message stream
info() << "PDG particle ID of " << info() << "PDG particle ID of " << m_partNamem_partName

<< " is " << << " is " << m_partIDm_partID << << endmsgendmsg;;

err() << "Cannot retrieve properties for particle " err() << "Cannot retrieve properties for particle "
<< << m_partNamem_partName << << endmsgendmsg;;

Send to predefined message streamSend to predefined message stream
info() << "PDG particle ID of " << info() << "PDG particle ID of " << m_partNamem_partName

<< " is " << << " is " << m_partIDm_partID << << endmsgendmsg;;

err() << "Cannot retrieve properties for particle " err() << "Cannot retrieve properties for particle "
<< << m_partNamem_partName << << endmsgendmsg;;

3-11 CERN Tutorial, October 2009

return Error("Cannot retrieve particle properties");return Error("Cannot retrieve particle properties");return Error("Cannot retrieve particle properties");return Error("Cannot retrieve particle properties");

Set Set printlevelprintlevel in job optionsin job options
MessageSvcMessageSvc().().OutputLevelOutputLevel = ERROR= ERROR
MySvcMySvc().().OutputLevelOutputLevel = WARNING= WARNING
MyAlgorithmMyAlgorithm().().OutputLevelOutputLevel = INFO= INFO

Set Set printlevelprintlevel in job optionsin job options
MessageSvcMessageSvc().().OutputLevelOutputLevel = ERROR= ERROR
MySvcMySvc().().OutputLevelOutputLevel = WARNING= WARNING
MyAlgorithmMyAlgorithm().().OutputLevelOutputLevel = INFO= INFO

Formatting with format(“string”, vars)Formatting with format(“string”, vars)
debug() << format("E: %8.3f GeV", energy) << endmsg;debug() << format("E: %8.3f GeV", energy) << endmsg;
Formatting with format(“string”, vars)Formatting with format(“string”, vars)
debug() << format("E: %8.3f GeV", energy) << endmsg;debug() << format("E: %8.3f GeV", energy) << endmsg;

Print everything of INFO level or higherPrint everything of INFO level or higher

MsgStream - Usage
The GaudiAlgorithm and GaudiTool base classes hide the technicalities of creating MsgStream. Simply use the verbose() debug(), info(), warning(), err(), fatal(), always() methods as in the examples above, passing the values to dump and the end-of-record stream modifier endmsg.

In the job options you can then specify the output level for your printout. In this example general printout is only done for messages with a severity ERROR or higher. However, for the service instance “MySvc” also warning messages will be printed and for the algorithm “MyAlgorithm” even informational messages.

Note: if you set the OutputLevel to DEBUG, the base class will print the value of all the algorithm Properties during initialization
Caveat: The GaudiAlgorithm and GaudiTool base classes were only introduced recently. In looking at older code, you will come across explicit usage of the MsgStream as shown below. This should now be avoided:
Add Header file
	#include “GaudiKernel/MsgStream.h”
Create object and print
	MsgStream log(msgSvc(), name());�	log << MSG::INFO << “Hello world!” << endmsg;

UnitsUnits
We use Geant4/CLHEP system of unitsWe use Geant4/CLHEP system of units

– mm, MeV, ns are defined to have value 1.
– All other units defined relative to this
– In header file “GaudiKernel/SystemOfUnits.h”
– In namespace Gaudi::Units

Multiply by units to set value:Multiply by units to set value:

We use Geant4/CLHEP system of unitsWe use Geant4/CLHEP system of units
– mm, MeV, ns are defined to have value 1.
– All other units defined relative to this
– In header file “GaudiKernel/SystemOfUnits.h”
– In namespace Gaudi::Units

Multiply by units to set value:Multiply by units to set value:
double m_jPsiMassWin = 0.5 * Gaudi::Units::GeV;

3-12 CERN Tutorial, October 2009

Divide by units to print value:Divide by units to print value:

Units can be used also in job options:Units can be used also in job options:

Divide by units to print value:Divide by units to print value:

Units can be used also in job options:Units can be used also in job options:

double m_jPsiMassWin = 0.5 * Gaudi::Units::GeV;

import GaudiKernel.SystemOfUnits as Units
SomeAlgorithm().MassWindow = 0.3 * Units.GeV

info() << “Mass window: ” << m_jPsiMassWin / Gaudi::Units::MeV
<< “ MeV” << endmsg;

StatusCodeStatusCode

•• Object returned by many methodsObject returned by many methods
– Including GaudiAlgorithm::initialize(), GaudiAlgorithm::execute() ,

etc.

• Currently, takes two values:
– StatusCode::SUCCESS
– StatusCode::FAILURE

•• Object returned by many methodsObject returned by many methods
– Including GaudiAlgorithm::initialize(), GaudiAlgorithm::execute() ,

etc.

• Currently, takes two values:
– StatusCode::SUCCESS
– StatusCode::FAILURE

3-13 CERN Tutorial, October 2009

– StatusCode::FAILURE

• Should always be tested
– If function returns StatusCode, there must be a reason
– Report failures:
StatusCode sc = someFunctionCall();
if (sc.isFailure())

{ Warning(“there is a problem”, sc).ignore(); }

• If IAlgorithm methods return
StatusCode::FAILURE, processing stops

– StatusCode::FAILURE

• Should always be tested
– If function returns StatusCode, there must be a reason
– Report failures:
StatusCode sc = someFunctionCall();
if (sc.isFailure())

{ Warning(“there is a problem”, sc).ignore(); }

• If IAlgorithm methods return
StatusCode::FAILURE, processing stops

ExerciseExercise

Now read the web page attached to this Now read the web page attached to this
lesson in the agenda and work through lesson in the agenda and work through
the exercisethe exercise

Now read the web page attached to this Now read the web page attached to this
lesson in the agenda and work through lesson in the agenda and work through
the exercisethe exercise

3-14 CERN Tutorial, October 2009

