
Status of Muonitoring tools

G. Graziani Oct 7 2009 LHCb Software Week

Overview

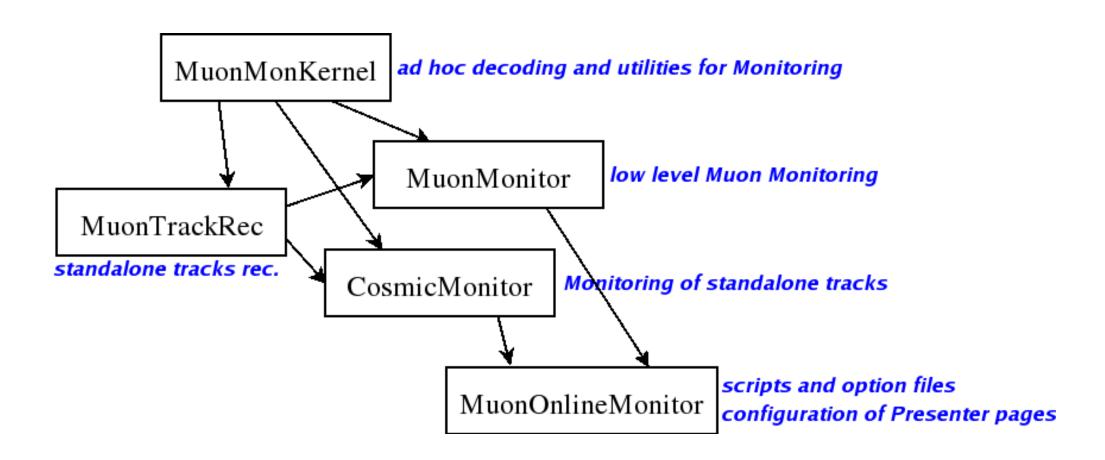
Muon DQ is mostly based on standalone Online Monitoring

- most calibrations are hardware based (thresholds, timing)
- typical problems require immediate action (trigger efficiency affected):
- HV trips
- chamber/readout inefficiency
- time misalignment

However, we also need some monitoring during reconstruction:

- space alignment
 (expected to change only after detector opening)
- MuonID performances
 (expected to be stable)
- efficiency monitor(use tracking + large statistics)

Online Monitoring


(G.Passaleva, G.G.)

Low level monitoring:

- occupancy and time spectra by different hardware components (Tell1s, ODEs, chambers, regions, quadrants)
- Standalone track reconstruction:
- checks of internal space and time alignment
- limited by CPU (single process) to ~ 10 Hz of rec. tracks ⇒detect 1 ns time misalignment of a FEB or 1 mm displacement of an half–station in a few hours

Software for Online Monitoring

All packages in cvs under Muon/

The Muon/MuonTrackRec package

(replaces Muon/MuonNNet)
provides standalone muon
track reconstruction:

- can use optimized tools for monitoring or the normal muon decoding/rec. offline tools (for use within Panoramix or Brunel)
- 2 rec. algorithms:
- Neural Network optimized for cosmics
- Combinatorial algorithm
 (à la HLT) for projective tracks

Monitoring in Brunel

Algorithms for Brunel monitoring sequence:

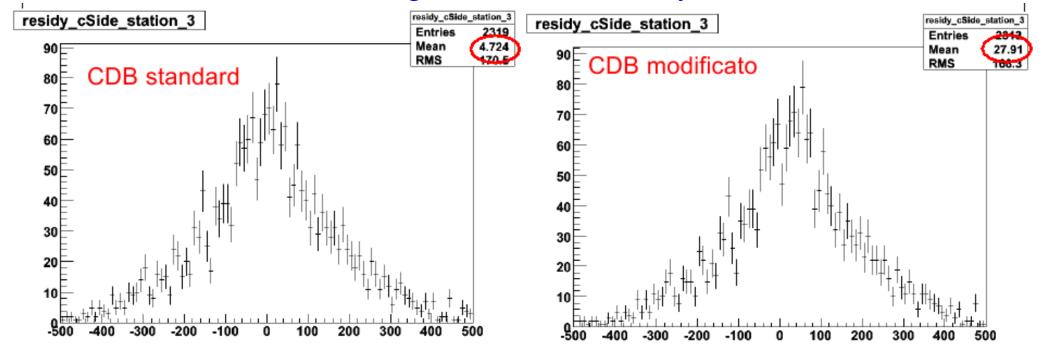
MuonPIDChecker (E. Polycarpo, M. Gandelman) generic checks on pattern recognition

MuonID performance monitoring inside DaVinciMonitors
 MuID2BodyPlot (A. Sarti)

New package Muon/MuonTrackMonitor to be released: MuonAlignmentMonitor (A. Petrella, S. Vecchi) MuonEfficiencyMonitor (P. Desimone)

MuonID performance Monitoring

(A. Sarti et al.)

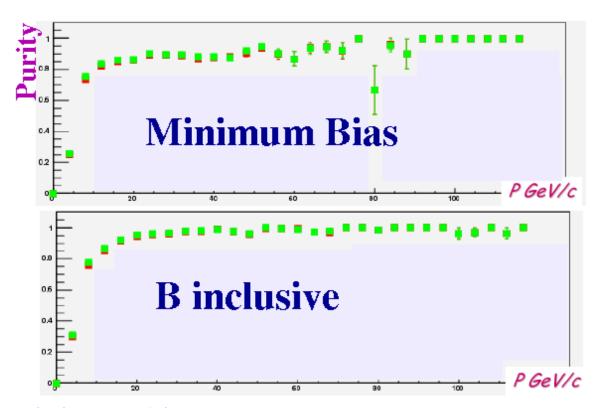

- MuonID calibration and monitoring performed using
- $J/\psi \rightarrow \mu\mu$ (prompt or detached, selection depending on luminosity) for efficiency (tag and probe method)
- $\Lambda \to \pi p$ for MisID
- Accurate calibrations (FOI and DLL) will be performed after stripping (needs $\sim 50 \text{k}$ of selected tracks per region $\simeq 3 \text{ days} @ 10^{31}$)
- first calibration and monitoring obtained from histograms produced in DaVinciMonitors
- expect to measure MuonID eff. with 2% accuracy and misID for pions and protons with 0.1% accuracy, with ~ 15 '@ 10^{31}
- check stability of FOI and DLL curves

Alignment monitoring

(A. Petrella and S. Vecchi)

- Full alignment procedure will be performed at regular intervals or when needed offline
- a faster algorithm to monitor alignment has been implemented:
- using objects from MuonID (long tracks + associated muon hits)
- checks the overall tracker/muon alignment by plotting the residual between extrapolated long tracks and muon segment
- checks the absolute position of each half station
- results accurate within a few mm

Test: misalign one half station by 30 mm



statistics used: 720k min. bias events

Efficiency Monitor

(P. DeSimone)

- can use the new MuonID loose selection (requiring at least 3/4 hits in M2–M5), excluding the triggering muon
- + cuts to enforce sample purity (track χ^2 , isolation cut, mip signal in calo)

- expect ~ 0.3 selected track/minimum bias event \Longrightarrow can measure efficiency with >100 tracks/chamber with 400k min. bias events
- to be released in a week or so

Conclusions

- Muon Online Monitoring on raw data in mature state
- standalone muon track reconstruction tools available also for offline use
- Monitoring algorithms for Brunel almost completed. Plan:
- include MuonTrackMonitor package in the next Brunel release
- prepare standard Presenter pages