

Development of MW-level Ka-band Gyroklystrons

Liang Zhang

on behalf of research teams of

Department of Physics, SUPA, University of Strathclyde, Glasgow, UK Electronic Engineering department, UESTC, Chengdu, China

Outlines

- Research groups (Strathclyde & UESTC)
- Motivation
- Principles of klystron and gyroklystron
- Simulation results
	- MIG gun
	- Cavity simulation

ABP group, Physics department, University of Strathclyde, Glasgow, UK

- Founded in 1978 by Prof. Alan Phelps
- **Group member**
	- 5 academic staff
	- 10 research staff
	- 6 PhD students
	- 1 technician

Successful high-power microwave sources built include FEL, CARM, gyrotron, gyro-TWA, BWO, Cherenkov maser & superradiant sources.

Accelerator relevant projects: DATA (dielectric and THz acceleration, CI), UK XFEL(Microwave Undulator, CI), MICE (Muon Ionisation Cooling Experiments, RAL), CompactLight project, WP4).

Present interests range from 200MHz to 1THz

High power millimetre wave technology group, Electronic Engineering department, University of Electronic Science and Technology of China, ChengDu, China

- Lead by Prof. Yong Luo
- **Group member**
	- 4 academic staff
	- 12 research staff
	- -11 PhD $+40$ master students
	- 30 technicians

Research covers:

Millimeter and sub-millimeter high power microwave sources, including gyrotron, gyroklystron, gyro-TWT. High efficiency, compact sources. Reliability and stability testing. Digital control and online diagnostics systems. Modulation power supplies for vacuum electron devices.

Motivation

Accelerator (High acceleration gradient, CERN)

- \triangleright Higher operating frequency
- Higher breakdown limit

Microwave undulator (Design for UK-XFEL)

 \triangleright Smaller period requires higher frequency \triangleright High power required (0.3 GeV/m ~ 1T).

Lineariser (Cockcroft Institute, CompactLight)

 \triangleright Correct the longitudinal phase space non-linearity from RF acceleration > 3rd or 4th harmonic of X-band RF LINAC frequency Outnut couple

Design targets

Gyroklystron (amplifier, narrow bandwidth) 36 GHz and 48 GHz, 2 MW or 1.5MW output power. Pulse duration 2 us, PRF 100 Hz.

Microwave sources

▶ Oscillators:

- ▶ Backward wave oscillator (GW-level)
- Gyrotron (ITER)
- Magnetron (industry heating)

Amplifiers:

- TWT (wide bandwidth, lower gain, communications)
- Klystron (narrow bandwidth, high gain for accelerators and radars)
- Cyclotron Autoresonance Maser (CARM, high frequency)

Commercial klystrons

S-band (3 GHz) C-band (6 GHz) X -band $(\sim 12 \text{ GHz})$

Klystrons

Conventional klystron

Bunching in axial direction, TM modes

- Operating frequency determined by the cavity size, difficult to achieve high power at high frequency
- High beam voltage, high frequency lead to small cavity gap.
- \triangleright To reduce the space charge effect and get higher power. (still small dimensions)
- Multiple-beam klystron
- Sheet-beam klystron
- **► Gyroklystron**
	- Bunching in azimuthal direction. TE modes.
	- Lower axial velocity due to the beam alpha results in larger cavity size.
	- Operating frequency determined by the external magnetic field.

 \triangleright Open output cavity, high power capability.

Ka-band gyroklystron at UESTC Low-power demonstration version

Dual-anode MIG gun. Beam alpha 1.2 Magnetic field compression ratio 7.8

Ka-band gyroklystron at UESTC

Successfully verified the design, further improvements on the electron gun and collector are required.

¹¹**ABP**

Improvements required

Configuration of MIG and IMIG. An example from KIT for 2MW coaxial-cavity gyrotron. Inverted MIG allows a larger emitter ring to have larger beam current.

MIG-type electron gun

Magnetic field

MIG-type electron gun

41 L	University of			
PARAMETERS	EGUN	MAGIC	CST	e
Velocity ratio α	1.32	1.32	1.32	
Velocity ratio spread $\Delta\alpha$ (%)	7.99	5.74	7.12	
Transverse velocity spread $\Delta \beta_t$ (%)	3.06	2.17	2.78	
Guiding centre radius R_{g0} (mm)	2.36	2.42	2.41	
Modulating anode voltage V_m (kV)	43.2	46.6	45.45	

Simulated by Egun, MAGIC and CST PS.

Simulation of the cavity

ABP

- Three-cavity structure
- The operating mode of input and buncher cavity are TE01. The mode of output cavity is TE02, to have larger power capability.

Nonlinear simulation model

Beam-wave interaction

$$
\frac{d\mathbf{p}}{dt} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})
$$

$$
\frac{d\varepsilon}{dt} = e\mathbf{v} \cdot \mathbf{E}
$$

The normalized motion equation
\n
$$
\frac{dp}{dz} + \frac{i\omega}{cu_z} \left(\gamma - \frac{\Omega_0}{\omega} \right) p = \frac{i\eta p}{2\Omega_0} \frac{dB_0}{dz} + \frac{i\eta}{2} \frac{\gamma}{u_{z0}} C_{mp} k_{mp} V_{\text{max}} \left(\frac{f_{mp}(z)}{(s-1)!} \right) \times J_{m-s} \left(k_{mp} R_e \right) \left(\frac{ck_{mp} p^*}{2\Omega_0} \right)^{s-1}
$$

$$
\frac{du_z}{dz} = -\left(\frac{\eta c u_t r_L}{u_z}\right) \frac{dB_0}{dz}
$$

\n Ignore the axial momentum of the helical electron beam\n
$$
\frac{dp}{dz} + \frac{i\omega}{cu_z} \left(\gamma - \frac{\Omega_0}{\omega} \right) p = \frac{i\eta}{2} \frac{\gamma}{u_{z0}} C_{mp} k_{mp} V_{\text{max}} \left(\frac{f_{mp}(z)}{(s-1)!} \right) \times J_{m-s} \left(k_{mp} R_e \right) \left(\frac{c k_{mp} p^*}{2 \Omega_0} \right)^{s-1}
$$
\n

interaction efficiency

$$
\eta = \frac{\langle \gamma_i \rangle - \langle \gamma_f \rangle}{\langle \gamma_i \rangle - 1} = \frac{\gamma_0 + 1}{2\gamma_0} \frac{\alpha_0^2}{\alpha_0^2 + 1} \eta_{\perp}
$$

Fast and quickly estimate the interaction efficiency.

Not accurate enough.

Nonlinear simulation results

PIC simulations on the beam-wave interaction

3.750

1.250

 -1.250

Acknowledgement

• This work is supported by the European Commission Horizon 2020 Project Compact light (777431-XLS), and the State Scholarship Fund from the China Scholarship Council.

Thank you for your attention!

