

Description of fission

First comparison between microscopic and macroscopic-microscopic Potential Energy Surfaces

M. Verriere¹ T. Kawano¹, M. R. Mumpower¹, P. Talou¹, N. Schunck²

Los Alamos National Laboratory, Los Alamos, NM 87545, USA
 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

LA-UR-18-24868

Context

1. National security

- nuclear deterrence
- non-proliferation
- 2. Energy
 - nuclear power plants
- 3. Fundamental Science
 - ► formation of elements in nucleosynthesis (r-process)
 - stability of superheavy elements

Neutron induced fission process

UNCLASSIFIED

• Los Alamos NATIONAL LABORATORY

Neutron induced fission process

Description of the fission process

Description of the fission process

Description of the fission process

Outline

1. Presentation of the approaches

- 2. Comparison
- 3. Conclusion

1. Presentation of the approaches

2. Comparison

3. Conclusion

Microscopic approach

Hartree-Fock-Bogoliubov

- Minimization of the total binding energy
- Mean/pairing field from NN interaction
- Self-consistent
- Requires an important calculation power (> 10min/state)

Microscopic approach

Hartree-Fock-Bogoliubov

- Minimization of the total binding energy
- Mean/pairing field from NN interaction
- Self-consistent
- Requires an important calculation power (> 10min/state)

Constraints: elongation (Q_{20}) and asymmetry (Q_{30})

Microscopic approach

Hartree-Fock-Bogoliubov

- Minimization of the total binding energy
- Mean/pairing field from NN interaction
- Self-consistent
- Requires an important calculation power (> 10min/state)

Macroscopic-microscopic approach

Finite Range Liquid-Drop

- Parametrization of the geometric shape
- ► Total binding energy E:

 $E = E_{mac} + \Delta E_{sh} + \Delta E_{pair}$

- \blacktriangleright E_{mac}: Smooth energy
- $\blacktriangleright \Delta E_{\rm sh}$: Shell correction
- ΔE_{pair} : Pairing correction

Macroscopic-microscopic approach

Finite Range Liquid-Drop

- Parametrization of the geometric shape
- ► Total binding energy *E*:

 $E = E_{mac} + \Delta E_{
m sh} + \Delta E_{
m pair}$

- ► *E_{mac}*: Smooth energy
- $\Delta E_{\rm sh}$: Shell correction
- ΔE_{pair} : Pairing correction

FRLDM – macroscopic part

Macroscopic-microscopic approach

Finite Range Liquid-Drop

- Parametrization of the geometric shape
- ► Total binding energy *E*:

 $E = E_{mac} + \Delta E_{
m sh} + \Delta E_{
m pair}$

- ► *E_{mac}*: Smooth energy
- $\Delta E_{\rm sh}$: Shell correction
- ΔE_{pair} : Pairing correction

NISA

3QS parametrization: $\alpha_2 = 0.0$, $\alpha_3 = 0.0$, $\sigma_3 = 1.0$

3QS parametrization: $\alpha_2 = 0.0$, $\alpha_3 = 0.0$, $\sigma_3 = 1.0$

UNCLASSIFIED

10 / 21 • Los Alamos NATIONAL LABORATORY EST. 1943

3QS parametrization: $\alpha_2 = 0.0$, $\alpha_3 = 0.0$, $\sigma_3 = 1.0$

Potential energy surface of ²³⁶U

3QS parametrization: $\alpha_2 = 0.2$, $\alpha_3 = 0.0$, $\sigma_3 = 1.0$

Potential energy surface of ²³⁶U

3QS parametrization: $\alpha_2 = 0.2$, $\alpha_3 = 0.0$, $\sigma_3 = 1.0$

UNCLASSIFIED

• Los Alamos NATIONAL LABORATORY EST. 1943

Potential energy surface of ²³⁶U

3QS parametrization: $\alpha_2 = 0.4$, $\alpha_3 = 0.0$, $\sigma_3 = 1.0$

3QS parametrization: $\alpha_2 = 0.6$, $\alpha_3 = 0.0$, $\sigma_3 = 1.0$

Comparison

Outline

1. Presentation of the approaches

2. Comparison

3. Conclusion

Approaches

Calculation of microscopic potential energy surfaces

- 1. few parameters (pprox 15),
- 2. only 2-3 degree of freedom (usually \hat{Q}_{20} , \hat{Q}_{30} and \hat{Q}_{40}),
- 3. discontinuities and local minima,
- 4. 10 minutes per states (\approx 100000 states in 2D).
- Calculation of macroscopic-microscopic potential energy surfaces
 - 1. more parameters (\approx 25),
 - 2. $<\!\!0.2$ second per states, $\approx 3000 \times$ faster,
 - 3. possibility to include more degrees of freedom (5D),
 - 4. no discontinuities.

Comparison

Microscopic PES, ²⁴⁰Pu

2-dimensional Potential Energy Surface of ²⁴⁰Pu

PES propagation code: <u>M. Verriere</u>, N. Dubray HFB code: J.-F. Berger, N. Dubray, M. Verriere, (axial, 2 centers HO basis)

Microscopic PES, ²⁴⁰Pu

2-dimensional Potential Energy Surface of ²⁴⁰Pu

PES propagation code: <u>M. Verriere</u>, N. Dubray HFB code: J.-F. Berger, N. Dubray, M. Verriere, (axial, 2 centers HO basis)

Macroscopic-microscopic PES, ²⁴⁰Pu

2-Dimensional Potential Energy Surface of ²⁴⁰Pu (preliminary)

Macroscopic-microscopic PES, ²⁴⁰Pu

4-Dimensional Potential Energy Surface of ²⁴⁰Pu (preliminary)

UNCLASSIFIED

18 / 21 • Los Alamos NATIONAL LABORATORY EST. 1941 Conclusion

Outline

1. Presentation of the approaches

2. Comparison

3. Conclusion

Conclusion

- ► The macroscopic-microscopic approach offers more collective degrees of freedom (5-D)
- Microscopic effects are important for the dynamics (tunneling, collective correlations)

Project

Construct a new approach:

- using a macroscopic-microscopic PES (with FRLDM)
- and a microscopic method for the description of the dynamics (with TDGCM+GOA)

Thank you!

