Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

15th Varenna Conference on Nuclear Reaction Mechanisms 11-15 June, Villa Monastero Varenna

Francesca Cavanna

Nuclear astrophysics

- Aim of nuclear astrophysics: understand nuclear reactions that shape much of the visible universe
- Nuclear fusion is the engine of stars: it produces the energy that stabilizes them against gravitational collapse and makes them shine
- Among the key parameters (chemical composition, opacity, etc.) to model stars, reactions cross sections play an important role
- The evolution of the stars is determined by fusion reactions
- ✓ They determine the origin of elements in the cosmos, stellar evolution and dynamic
- \checkmark Many reactions ask for high precision data

Francesca Cavanna

15th Varenna Conference on NRM

14/06/2018

The importance of going underground...

Cross sections in the range of pb-fb at stellar energies

with typical laboratory conditions reaction rate R can be as low as few events per month

14/06/2018

Rate and background

The rate R has to be compared with background B

B_{beam induced} : reactions with impurities in the target, collimators,... secondary processes

B_{env}: natural radioactivity mainly from U and Th chains

B_{cosmic} : mainly muons

Background reduction – HpGe detectors - gamma

 $E_{\gamma} < 3 \text{ MeV} \rightarrow \text{passive shielding for environmental bck}$

Secondary gammas created by μ interactions are reduced

underground passive shielding is more effective!

Laboratory for Underground Nuclear Astrophysics

Radiation	LNGS/surface
Muons	10-6
Neutrons	10-3

LNGS (1400 m rock shielding \equiv 4000 m w.e.)

15th Varenna Conference on NRM

LUNA experimental setup

Hydrogen burning reactions

pp chain

Big bang nucleosynthesis

Origin of meteoritic stardust: the ${}^{17}O(p,\alpha){}^{14}N$ reaction

- ¹⁷O(p,α)¹⁴N reaction affects ¹⁷O/¹⁶O ratio and ¹⁸F abundance in several stellar scenarios (AGB, Classical Novae..)
- ✓ Resonance studied at LUNA: $E_R = 64.5 \text{ keV}$
- ✓ Intense proton beam on ¹⁷O enriched solid target
- \checkmark Alpha particles detected with an array of 8 silicon detectors
- ✓ Detected alpha particle energy ~ 250 keV

Origin of meteoritic stardust: the ${}^{17}O(p,\alpha){}^{14}N$ reaction

- ¹⁷O(p,α)¹⁴N reaction affects ¹⁷O/¹⁶O ratio and ¹⁸F abundance in in several stellar scenarios (AGB, Classical Novae..)
- ✓ Resonance studied at LUNA: $E_R = 64.5 \text{ keV}$
- ✓ Intense proton beam on ¹⁷O enriched solid target
- ✓ Alpha particles detected with an array of 8 silicon detectors
- ✓ Detected alpha particle energy ~ 250 keV

Origin of meteoritic stardust: the ${}^{17}O(p,\alpha){}^{14}N$ reaction

✓ The reaction rate is a factor 2-2.5 higher than previously thought→ stardust grains recovered from meteorites can now be attributed to massive AGB stars (4-8 M_{Sun}).

These stars contributed to the dust inventory from which the Solar System formed!

BBN: A new ${}^{2}H(p,\gamma){}^{3}He$ cross section measurement

<u>Direct measurements</u>: observation of absorption lines

$$\left. \frac{D}{H} \right|_{OBS} = (2.547 \pm 0.033) \cdot 10^{-5}$$

*R. Cooke at al., ApJ. 781 (2016) 31

<u>BBN theory</u>: from the cosmological parameters and the cross sections of the processes involved in ²H creation and destruction

$$\left. \frac{D}{H} \right|_{BBN} = (2.65 \pm 0.07) \cdot 10^{-5}$$

*E. Di Valentino et al., Phys. Rev. D 90 (2014) 023543

BBN: A new ${}^{2}H(p,\gamma){}^{3}He$ cross section measurement

✓ The error budget of computed abundance of deuterium is mainly due to the $d(p,\gamma)^{3}$ He reaction

Reaction	$\sigma_{^{2}\mathrm{H/H}} imes 10^{5}$
$p(n, \gamma)^2 \mathbf{H}$	± 0.002
$d(p, \gamma)^3$ He	± 0.062
$d(d, n)^3$ He	± 0.020
$d(d, p)^3 \mathrm{H}$	± 0.013

*E. Di Valentino et al., Phys. Rev. D 90 (2014) 023543

- Only a single dataset is currently available at the BBN energy range with a systematic error of 9%
- ✓ No perfect agreement with recent «Abinitio» calculations (Marcucci et al. 2016)

Measurement goal:

 Cross section measurement at 30keV<E_{cm}<300keV with ~5% accuracy

LUNA gas target setup

windowless gas target

BBN: A new ${}^{2}H(p,\gamma){}^{3}He$ cross section measurement

I phase: the BGO setup

- \checkmark E_{beam} \sim 50 300 keV
- Energy resolution in the total absorption peak ~ 8%
- \checkmark ~ 4π geometry
- High detection efficiency for 5.5 MeV
 γ-rays ~ 62%

BGO spectra analysis

- ${}^{2}\text{H}(p,\gamma){}^{3}\text{He run} (50 < \text{E}_{\text{beam}} < 300 \text{ keV})$
- Beam induced background run in vacuum at the same proton energy
- Selection of the energy ROI (4000-6500 keV)
- N_{γ} obtained by integrating each BGO spectrum within the ROI

²H(p, γ)³He: HPGe phase

II phase: the HPGe setup

- \checkmark High energy resolution in the total absorption peak < 0.10%
- \checkmark Efficiency in the total absorption peak ~ 0.6%
- Possibility of performing angular distribution measurements with extended gas target (33 cm)

Efficiency calibration

Efficiency calibration \rightarrow coincidence between two γ rays emitted in cascade (decay $\gamma - \gamma$ angular correlation is well known) :

- ✓ Low energies (1172-1333keV): ⁶⁰Co radioactive source
- ✓ High energies (1384-6172) keV : ${}^{14}N(p,\gamma){}^{15}O$ on the E_R=259 keV resonance

E _γ (keV)	Branching (%)
5181 + 2375	16.9 ± 0.4
5240 + 2315	0.22 ± 0.07
6172 + 1384	58.3 ± 0.3
6791 + 764	23.0 ± 0.3
7556 + 0	1.50 ± 0.03

Efficiency evaluation above 1333 keV

BBN: A new ${}^{2}H(p,\gamma){}^{3}He$ cross section measurement

Francesca Cavanna

From hydrogen to helium and carbon burning or ... from LUNA to LUNA-MV

A new 3.5 MV accelerator will be installed soon in the north part of Hall B at Gran Sasso which is now being cleared

The LUNA-MV accellerator

H He C

 $^{1}\text{H}^{+}$ (TV: 0.3 – 0.5 MV): 500 μA $^{1}\text{H}^{+}$ (TV: 0.5 – 3.5 MV): 1000 μA

 $^{4}\text{He}^{+}$ (TV: 0.3 – 0.5 MV): 300 μA $^{4}\text{He}^{+}$ (TV: 0.5 – 3.5 MV): 500 μA

 $^{12}C^{+}$ (TV: 0.3 – 0.5 MV): 100 μA $^{12}C^{+}$ (TV: 0.5 – 3.5 MV): 150 μA $^{12}C^{++}$ (TV: 0.5 – 3.5 MV): 100 μA

- Inline Cockcroft Walton accelerator
- TERMINAL VOLTAGE: 0.2 3.5 MV
- Precision of terminal voltage reading: 350 V
- Beam energy reproducibility:
 0.01% TV
- Beam energy stability: 0.001% TV / h
- ✓ Beam current stability: < 5% / h
- ✓ 80 cm thick concrete shielding
- No perturbation of the LNGS natural neutron flux

Helium and Carbon burning

In order to study reactions occurring at higher temperature than those belonging to hydrogen burning or BBN an higher energy machine is needed

Helium and Carbon burning

In order to study reactions occurring at higher temperature than those belonging to hydrogen burning or BBN an higher energy machine is needed

The neutron source reactions for the s-process: ${}^{13}C(\alpha,n){}^{16}O$ and ${}^{22}Ne(\alpha,n){}^{25}Mg$

Nucleosynthesis of half of the elements heavier than Fe

14/06/2018

The ${}^{13}C(\alpha,n){}^{16}O$ reaction

- Heil *et al*.
- Drotleff *et al*.
- ^k Harrissopolus *et al*.
- × Brune et al.
- Pellegriti *et al*.
- La Cognata *et al*.

- ✓ Large statistical uncertainties at low energies
- ✓ Large scatter in absolute values (normalization problem)
- ✓ Systematic uncertainties (unknown, inconsistently treated)
- ✓ Uncertainties in detection efficiencies (experimental vs simulated)
- ✓ No data at low energy because of high neutron background in surface laboratories.
- \checkmark Extrapolations differ by a factor ~4 (10% accuracy would be required).

The ${}^{13}C(\alpha,n){}^{16}O$ reaction at LUNA and at LUNA-MV Direct Kinematics (⁴He beam on ${}^{13}C$ target)

- ✓ energy range $E_{cm} = 210 300 \text{ keV}$ ($E_{beam} \sim 275 400 \text{ keV}$) at LUNA-400
- ✓ energy range $E_{cm} = 240 1060 \text{ keV}$ ($E_{beam} \sim 0.3 1.4 \text{ MeV}$) at LUNA-MV
- ✓ ¹³C-enriched solid target (drawbacks: degradation, possible carbon deposition)
 - Tipical density 2 10^{17} - 10^{18} at/cm²
- ✓ Beam induced background: (α ,n) reaction on impurities (¹⁰B, 11B, 17O, 18O) in the target and beam line
- ✓ neutron energy range: $E_n = 2 3.5 \text{ MeV} (E_{\text{beam}} = 0.3 1.4 \text{ MeV})$
- \checkmark 18 ³He counters embedded in a polyethylene matrix (10 atm, 1 inch dimeter, 40 cm long)

Inverse Kinematics (13C beam on 4He target)

- ✓ Only possible at LUNA-MV
- ⁴He gas target:
 - P = 1 mbar
 - L = 10 cm

 \Rightarrow 2.5 10¹⁷ atoms/cm² at STP

The ²²Ne(α ,n)²⁵Mg reaction

- The lowest well studied resonance at 832 keV dominates the rate (Drotleff et al. 1993)
- Only upper limits (~10 pb) at: 570 keV < E_α < 800 keV (energy region of interest for AGB stars).
 Extrapolations may be affected by unknown resonances
- At T₉ < 0.18 the competing reaction ²²Ne(α,γ)²⁶Mg (Q=10.6 MeV) should become dominant (now measured at LUNA 400 kV) (Denise Piatti talk for details)
- Same neutron detector as for ${}^{13}C(\alpha,n){}^{16}O$

✓ Gas target with enriched ²²Ne gas

- ¹²C target: thick (1 mm) or thin (40 μg/cm² which corresponds to 0.18 μm)
- High efficiency HPGe detector at 0° for gammas
- ✓ 4 Si detectors (100 mm², 500 µm thick) for α and p at E_{CM} > 2.5 MeV
- ✓ 2 Δ E-E telescopes for p at E_{CM} < 2.5 MeV

Conclusions

- ✓ The extremely low laboratory background of LNGS has allowed for the first time the realization of nuclear physics experiments with very small count rates, down to a couple of events per month
- Several hydrogen burning and BBN fusion reactions have been studied in the last 25 years
- ✓ A new phase devoted to helium and carbon burning is starting with LUNA-MV
- ✓ The new accelerator will arrive at the beginning of 2019; the first experiment will start in summer 2019
- LUNA will be not anymore alone: JUNA (China), Felsenkeller (Germany), Caspar (United States)

Thanks for your attention

The LUNA collaboration

- A. Boeltzig*, G.F. Ciani*, L. Csedreki, A. Formicola, I. Kochanek, M. Junker INFN LNGS /*GSSI, Italy
- D. Bemmerer, K. Stoeckel, M. Takacs, | HZDR Dresden, Germany
- C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy
- C. Gustavino | INFN Roma1, Italy
- Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- A. Guglielmetti, D. Trezzi, G. Zorzi | Università di Milano and INFN Milano, Italy
- A. Best, A. Di Leva, G. Imbriani, | Università di Napoli and INFN Napoli, Italy
- G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, C. Bruno, T. Chillery, T. Davinson | University of Edinburgh, United Kingdom
- G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino*, L. Schiavulli, A. Valentini Università di Bari and INFN Bari/*Lecce, Italy