The study of the $^{22}\text{Ne}(\alpha,\gamma)^{26}\text{Mg}$ reaction at LUNN

Speaker: Denise Piatti^{1,2} for LUNA collaboration

¹ = University of Padua
 ² = I.N.F.N Padova

15th Varenna Conference on Nuclear Reaction Mechanisms, Varenna 11th - 15th June 2018

Astrophysical Motivation

• The ²²Ne(α,γ)²⁶Mg reaction (Q_{val} = 10.6 MeV) competes with the ²²Ne(α,n)²⁵Mg reaction (Q_{val} = - 478 keV) \rightarrow Source of neutrons for s-process in <u>low-mass Asymptotic Giant Branch stars (AGB)</u>

 $T \ge 2.5 \cdot 10^8 \, \text{K}$

Astrophysical Motivation

• The ²²Ne(α,γ)²⁶Mg reaction (Q_{val} = 10.6 MeV) competes with the ²²Ne(α,n)²⁵Mg reaction (Q_{val} = - 478 keV) \rightarrow Source of neutrons for s-process in <u>low-mass Asymptotic Giant Branch stars (AGB)</u> and in <u>massive stars</u>

 $T \ge 3 \cdot 10^8 \text{ K}$ \Rightarrow Convective core He-burning

T ~ 10⁹ K → Convective core C-burning

Astrophysical Motivation

• The ²²Ne(α,γ)²⁶Mg reaction (Q_{val} = 10.6 MeV) competes with the ²²Ne(α,n)²⁵Mg reaction (Q_{val} = - 478 keV) \rightarrow Source of neutrons for s-process in <u>low-mass Asymptotic Giant Branch stars (AGB)</u> and in <u>massive stars</u>

 $T \ge 2.5 \cdot 10^8 \, \text{K}$

 $\mathsf{T} \ge 2.5 \cdot 10^8 \,\mathsf{K}$

Convective core He-burning

 $T \sim 10^{9} \, K$

Convective core C-burning

 The ²²Ne(α,γ)²⁶Mg reaction rate affects the nucleosynthesis of isotopes between ²⁶Mg and ³¹P in intermediate-mass AGBs

- The non-resonant contribution is small
- Three dominating resonances:
 - E α = 831 keV (E_x = 11318 keV) $\rightarrow \omega \gamma$ known within 6% of uncertainty ;

5

- $E\alpha = 637 \text{ keV} (E_x = 11154 \text{ keV}) \rightarrow \text{negligible contribute};$
- Eα = 395 keV (E_x = 10950 keV) → ???;

LUNA

1400 m of Dolomite rock
 → natural shielding
 against cosmic rays

400kV accelerator → high
 intensity, higly
 collimated and stable H⁺
 and 4He⁺ beams

Two beam-lines: gas target and solid target 7

The Setup

• The measurement was performed at the gas target beam line

- The measurement was performed at the gas target beam line
- 399.9 keV ^{+}H beam, I ~ 250 μA

- The measurement was performed at the gas target beam line
- 399.9 keV ⁺H beam, I ~ 250 μ A
- differential pumped windowless gas target system → three pumping stages
- $P_{line} = 10^{-7} \rightarrow 10^{-3} \, mbar$
- P_{chamber} = 1 mbar
- Recirculation mode

- Target gas: 99.999% pure,
 99.9% enriched ²²Ne gas
- Target chamber surrounded by the detectors:
 6 optically indipendent BGO crystals
- Solid angle ~ 4π
- Timestamp and energy recorded for each event → addback spectrum offline

- 99.999% pure 22Ne gas
- The detector: 6 optically indipendent BGO crystals
- Calorimetric measurement of Ibeam
- Cold side at 7° by a cooling machine
- Hot side kept at 70° by the power of 8 resistors W₀

$$I_{beam} = \frac{(W_0 - W_{meas})}{(E_{beam} - \Delta E)}$$

The Data Acquisition

t_m	Q	Target Gas	Target Pressure	E_{α}	Aim
days	[C]		[mbar]	$[\mathrm{keV}]$	
49	-	-	-	-	Laboratory background
0.5	13.5	Ar	0.468	399.9	Beam induced background
21.2	430	22 Ne	1	399.9	$395 \ \mathrm{keV}$ resonance

- Laboratory Background spectra acquired before, after and far before the measurement
- Insufficient statistics for the Beam Induced Background (B.I.B) estimation
- Contamination in the target gas was monitored using a mass spectrometer

The Analysis and Results:

Characterization of the setup:

- Calorimeter calibration:
- Performed in vacuum
- For two different temperature of the cold side
- Comparing the W by the calorimeter and the W by a charge integrator

- Characterization of the setup:
 - Calorimeter calibration
 - Density profile of the target determined
 → Energy loss inside the chamber → I_{beam}

- Characterization of the setup:
 - Calorimeter calibration
 - Density profile
 - Calibration in efficiency of the detector: → tuning simulations by Geant 3 and Geant 4 codes with experimental data

Is there a significant signal?→ Lab. Back. vs ²²Ne spectra

 Comparison between Laboratory Background spectra and the experimental spectra

- Calculation of the Critical Limit (L_{crit}) and of the Net Count (N) in the ROI:
 - $\rightarrow \mathbf{N} < \mathbf{L}_{\mathrm{crit}}$

Calculation of the Upper Limit of the resonance strength

 $\rightarrow \omega \gamma_{ul} = 1 \cdot 10^{-10} \, eV$

"Preliminary" Results

 Some problems in the first campaign MUST be overcomed → e.g. same statistics for B.I.B. and the measurement

 Some improvements still can be done → e.g. reducing the neutrons background with a shield against neutrons around the detector

New campaign is ongoing

1 order of magnitude lower in $\omega\gamma$

Conclusion

• The fundamental role of the 22 Ne(α,γ) 26 Mg reaction in Astrophysics

• Why going underground?

• Experimental Results and ...

• ... Issues

Thank You for the Attention

LUNA Collaboration

INFN LNGS /GSSI, Italy: A. Boeltzig, G.F. Ciani, L. Csedreki, A. Formicola, I. Kochanek, M. Junker HZDR Dresden, Germany: D. Bemmerer, M. Takács, Stöckel, T. Szülcs INFN and Università di Padova, Italy: C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti **INFN Roma1, Italy:** C. Gustavino MTA-ATOMKI Debrecen, Hungary: Z. Elekes, Zs. Fülöp, Gy. Gyurky Konkoly Observatory, Hungarian Academy of Sciences, Hungary: M. Lugaro **INAF Teramo, Italy: O. Straniero** Università di Genova and INFN Genova, Italy: F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli Università di Milano and INFN Milano, Italy: A. Guglielmetti Università di Napoli and INFN Napoli, Italy: A. Di Leva, G. Imbriani, A. Best Università di Pisa and INFN Pisa, Italy: L.E. Marcucci Università di Torino and INFN Torino, Italy: G. Gervino University of Edinburgh, United Kingdom: M. Aliotta, C. Bruno, T. Chillery, T. Davinson Università di Bari and INFN Bari, Italy: G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli