15th Varenna Conference on Nuclear Reaction Mechanisms Varenna, 11-15 June 2018

MONET code: evaluation of the dose in Hadrontherapy

Alessia Embriaco

INFN Sezione di Milano

Istituto Nazionale di Fisica Nucleare

MONET MOdel of ioN dosE for Therapy

¹ Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, PhD thesis

From a physical point of view, ${}^{4}He$ ions seem to fill the gap between protons and ${}^{12}C$.

The most important advantages of ⁴*He* beams are a reduction of:

- multiple Coulomb scattering compared to protons,
- energy straggling compared to protons,
- projectile fragmentation than Carbon ions.

Lateral profile

e sum of **multiple Coulomb**

The lateral distribution is calculated as the sum of **multiple Coulomb** scattering and nuclear interactions^{2 3}:

$$f_x(x) = W_\rho f_M(x) + (1 - W_\rho) \frac{t(x)}{\int t(u) du}$$

- *f_M* Molière distribution
- W_p primary particle weight
- t(x) is a Cauchy-Lorentz function:

$$t(x) = \frac{1 - A \exp\left[-\frac{x^2}{2b^2 \sigma^2}\right]}{\pi b \left(\frac{x^2}{b^2} + 1\right)}$$

- $1 W_p$ nuclear contribution
- ²Bellinzona et al. 2016 Physics in Medicine and Biology 61 N102
- ³Embriaco et al. 2017 Physica Medica 40 51-58

⁴ He ions of 150 MeV/u at z=15 cm

The attenuation curves of ⁴*He* ions are fitted using an **error function multiplied by a linear parametrization**⁴:

$$W_{p} = (\alpha z + \beta) imes \operatorname{erf}\left(rac{R-z}{\gamma}
ight)$$

The energy analyzed are left: E=100 MeV/u, middle: E=150 MeV/u and right: E=200 MeV/u.

For energy of 200 MeV/u, the experimental data⁵ are added for the validation of the curve. The black dots are the results of new development version of FLUKA 2018(Thanks to Giulia Aricò).

⁴ Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

⁵Rovituso et al. 2017 *Physics in Medicine and Biology* **62**(4):1310

The longitudinal profile is characterized by the sum of three effects⁶:

- 1. Average energy loss
- 2. Straggling
- 3. Nuclear interaction

We have implemented a new formula of the average energy loss:

$$E_{K}(z) = -m + rac{F(z)}{2} + \sqrt{m^{2} + rac{F^{2}(z)}{4}}$$

Straggling

The energy deposed at the actual depth z can be obtained by the **convolution of the energy loss with a Gaussian** function:

$$\hat{E}_{\mathcal{K}}(z)$$
0 = $\int_{0}^{R} E_{\mathcal{K}}(\bar{z}) rac{e^{-(z-\bar{z})^{2}/2\sigma^{2}}}{\sqrt{2\pi}\sigma} d\bar{z}$

6Carlsson et al. 1997 Phys. Med. Biol. 42 1033-1053

⁷Bortfeld 1997 Med. Phys. 24 2024-2033

⁸Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

8

Including the nuclear interaction, the total expression of the deposited energy becomes:

$$f_z(z) = W_p \hat{E}_K(z) + (1 - W_p) E_N(z)$$

where W_p is the primary particle weight and $E_N(z)$ is a **linear** parametrization for the nuclear contribution:

$$E_N(z) = az + b$$

with the coefficients *a* and *b* are obtained by fitting FLUKA simulations.

The depth dose curve from FLUKA simulations are analyzed, focusing in the few centimeters after the peak.

Practical range⁹: the depth corresponding to the intersection point between the tangent at the inflection point of the descending part of the depth dose profile and the exponentially extrapolated tail.

⁹Kempe et al. 2008 *Medical Physics* **35(1)** 159–70

A. Embriaco | MONET code: evaluation of the dose in Hadrontherapy

Therefore the total energy deposition for ⁴He ions is given by:

$$f_z(z) = \begin{cases} W_p \hat{E}_k(z) + (1 - W_p)(a'z + b') & 0 < z < R \\ mz + q & R < z < R_p \\ \exp(p_0 + p_1 z) & z > R_p \end{cases}$$

where *m* and *q* are the parameter of the tangent at the inflection point and the p_0 and p_1 the parameters of the exponential fit of the tails.

Total energy deposition

Bragg curves including nuclear contributions of ⁴*He* ions calculated with MONET α compared with FLUKA simulations for 200 MeV/u.

⁸Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

3-dimensional dose distribution

⁴ He ions of 150 MeV/u

12

⁴He Single Gaussian beam

Energy 100 MeV/u at depth z=4 cm (Bragg peak at 7.8 cm).

⁸Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

⁴He Single Gaussian beam

Energy 150 MeV/u at depth z=15 cm (Bragg peak at 15.9 cm).

⁸Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

A. Embriaco | MONET code: evaluation of the dose in Hadrontherapy

14

⁴He Single Gaussian beam

Energy 200 MeV/u at depth z=25 cm (Bragg peak at 26.1 cm).

⁸Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

A. Embriaco | MONET code: evaluation of the dose in Hadrontherapy

15

Field size factor test

The field size factor is defined as:

$$FSF(f) = rac{D_f}{D_{10}}$$

where f assumes the values 4, 6, 8, 10, 12 cm.

Field size factor for ⁴*He* ions:(left) 100 Mev/u at z=6 cm, (middle) 150 MeV/u at z=15 cm and (right) 200 MeV/u at z=25 cm.

⁸Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

FSF differences between the model and FLUKA for four fields, three depths and three energies:

E(MeV)	100/u			150/u			200/u		
FSF	2	4	6	5	10	15	10	15	25
4	0.4%	0.6%	0.5%	0.9%	1.2%	0.9%	1.8%	1.9%	1.3%
6	0.1%	0.1%	0.1%	0.3%	0.6%	0.3%	1.1%	1.2%	0.4%
8	0.0%	0.1%	0.0%	0.1%	0.3%	0.2%	0.6%	0.7%	0.3%
12	0.0%	-0.0%	-0.0%	-0.1%	-0.2%	-0.2%	-0.4%	-0.6%	-0.3%

The FSF tests show a good evaluation of the low dose contributions with MONET α code.

⁸Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

MONET code

18

The results of the model for Helium ions are validated with FLUKA.

Advantages

- Physical foundation
- only 4 free parameters for energy
- accuracy
- fast calculation time (for each depth 2/4 s for single beam/lateral scan)

MONET code

18

The results of the model for Helium ions are validated with FLUKA.

Advantages

- Physical foundation
- only 4 free parameters for energy
- accuracy
- fast calculation time (for each depth 2/4 s for single beam/lateral scan)

Developments

- dose database of interest for the clinical use
- online/in-room fast dose evaluation tool

Backup Slides

Lateral profile of ⁴He ions

Lateral profile: E=100 MeV/u z=7 cm, middle: E=150 MeV/u z=7cm and right: E=200 MeV/u z=25 cm.

19

From 1D to 2D: Papoulis Algorithm

The projected distribution f_x and f_y are uncorrelated, but not independent."⁸

 $f(x,y) \neq f_x(x) \times f_y(y)$

In case of cylindrical symmetry:9

Transform $f_x(x)$ into $\mathbf{f}(r)$:

$$h(r) = 2 \int_0^{+\infty} f_x(\sqrt{r^2 + y^2}) dy$$
$$\mathbf{f}(r) = \frac{1}{2\pi r} \frac{dh(r)}{dr}$$

- ⁸Fruhwirth & Regler, Nucl. Instr.Meth. Phys. Res. A 456 (2001) 369-389
- ⁹Papoulis 1968 IEEE Transactions on Information Theory

Let us consider a distribution f(x) in the xy plane with circular symmetry ⁴:

$$f(x,y) = f(r) \qquad r = \sqrt{x^2 + y^2}$$

The marginal distribution $f_x(x)$ corresponding to f(x, y) is:

$$f_x(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{+\infty} f(r) dy = 2 \int_{0}^{+\infty} f(\sqrt{x^2 + y^2}) dy$$

Transform $f_x(x)$ into $\mathbf{f}(r)$:

$$h(r) = 2 \int_0^{+\infty} f_x(\sqrt{r^2 + y^2}) dy$$

$$\mathbf{f}(r) = \frac{1}{2\pi r} \frac{dh(r)}{dr}$$

⁴Papoulis 1968 IEEE Transactions on Information Theory

Total energy deposition

Bragg curves including nuclear contributions of ${}^{4}He$ ions calculated with MONET α compared with FLUKA simulations for 100 MeV/u. The bullet point represent the practical range R_p . In the inset plot, fragmentation tail is reported in log scale. The practical range as the intersection between tangent at inflection point and the exponential tail is reported in linear scale.

⁶Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, PhD thesis

Total energy deposition

Bragg curves including nuclear contributions of ⁴*He* ions calculated with MONET α compared with FLUKA simulations for 150 MeV/u.

A. Embriaco | MONET code: evaluation of the dose in Hadrontherapy

23

⁶Embriaco, A model for the fast and accurate dose evaluation in hadrontherapy, *PhD thesis*

Helium lateral profile

Lateral distribution of Helium beam with the different models. The plotted residuals are calculated between the FLUKA simulation and the model.

Helium lateral profile

Helium lateral profile

Lateral distribution of Helium beam with the different models. The plotted residuals are calculated between the FLUKA simulation and the model.