Examples of oscillation symmetry in hadronic and nuclear masses & widths and in astrophysics.

Boris Tatischeff

IPN Orsay CNRS/IN2P3, Universit Parts-Saclay, 91406 Orsay Cedex,

15th Varenna Conference on Nuclear Reaction Mechanisms, Villa Monastero,11-15 juin 2018

Oscillation phenomena

- In classical physics : opposite interactions (potential and kinetic) generate oscillations (pendulum, spring, ...).
- In quantum physics : Schrodinger equations solved with potential and kinetic interactions

Eventual oscillations are studied on masses with $m_{n+1} - m_n = f[(m_{n+1} + m_n)/2]$ $\Gamma_T = f(m)$

The data are fitted with cosine functions with defined periods

 In astrophysics: opposite interactions (gravitational and centrifugal related to the kinetic energy).

Unflavored mesons (I)

C. Patrignani et al. (Particle Data Group) Chin. Phys. C40,100001 (2017).

B. Tatischeff, *Systematics of oscillatory behavior in hadronic masses and widths*, arXiv: 1603.05505v2 [hep-ph] (2016).

B. Tatischeff, *Variation of Hadronic and Nuclei Mass Level Oscillation Periods for Different Spins,* Journal of Particle Physics **1**, 13 (2017).

Unflavored mesons(II)

C. Patrignani et al. (Particle Data Group) Chin. Phys. C40,100001 (2017).

B. Tatischeff, *Systematics of oscillatory behavior in hadronic masses and widths*, arXiv: 1603.05505v2 [hep-ph] (2016).

B. Tatischeff, *Variation of Hadronic and Nuclei Mass Level Oscillation Periods for Different Spins,* Journal of Particle Physics **1**, 13 (2017).

Strange mesons (K,K*)

B. Tatischeff, *Variation of Hadronic and Nuclei Mass Level Oscillation Periods for Different Spins,* Journal of Particle Physics **1**, 13 (2017).

Charmoniums, Bottomoniums

Mass & Width

Successive mass difference versus mean adjacent masses (MeV) Width versus mass

 $C\overline{C}$

bb

N* baryons

C. Patrignani et al. (Particle Data Group) Chin. Phys. C40,100001 (2017).

B. Tatischeff, Systematics of oscillatory behavior in hadronic masses and widths, arXiv: 1603.05505v2 [hep-ph] (2016).

B. Tatischeff, Variation of Hadronic and Nuclei Mass Level Oscillation

Periods for Different Spins, Journal of Particle Physics 1, 13 (2017).

Δ^* baryons

¹⁰B and ¹⁵N nuclei

F. Ajzenberg-Selove, Energy Levels of Light Nuclei A=5-10, Nucl. Phys. A320, 153 (1979).

- F. Ajzenberg-Selove, Energy Levels of Light Nuclei A=13-15, Nucl. Phys. A268, 150 (1976).
- **B. Tatischeff,** *Variation of Hadronic and Nuclei Mass Level Oscillation Periods for Different Spins,* Journal of Particle Physics **1**, 13 (2017).

The state is included in the mass figure

F. Ajzenberg-Selove, Energy Levels of Light Nuclei A=13-15, Nucl. Phys. A268, 150 (1976).
B. Tatischeff, Variation of Hadronic and Nuclei Mass Level Oscillation Periods for Different Spins, Journal of Particle Physics 1, 13 (2017).

M=5.318±0.03 MeV, Γ =(260 keV) Spin (0⁺, 1⁺) ?

- only one J=0 state below M=5.318 MeV
- compatible with J=1

D.R. Tilley, H.R. Weller, and C.M. Cheves, *Energy Levels of Light Nuclei A=16,* Nucl. Phys. **A564,** 1 (1993).

B. Tatischeff, *Variation of Hadronic and Nuclei Mass Level Oscillation Periods for Different Spins,* Journal of Particle Physics **1**, 13 (2017).

Results for Hadrons and Nuclei

- Regular oscillations observed in particle and nuclei, masses and widths, provided they belong to the same family and same spin
- Simple cosine functions describe the data.
- Only periods are discussed, the oscillation amplitudes are not considered.
- Necessary *condition*: not too small number of data; several data in the same arch.

Generalisation

- Every time some object results from several smaller masses, these are submitted to opposite interactions otherwise the composite mass will disintegrate or mix into a totally new object with loss of individual components.
- Verified in quantum physics, like in classical physics, since both result from opposite interactions.
- Let us adress ourselves the question to look for the same observation in the astronomical world submitted to centrifugal forces related to kinetic and gravitational forces.
- Study possible oscillations in data belonging to different astronomical scales.

B.T. « May the oscillation symmetry be applied to TRAPPIST-1 terrestrial planets to predict the mass of the seventh planet ? » Phys. and Astron. Int. J. 2018.2(3)-193-197-29 Mai 2018

New solar planets ?

- Possible 9th giant planet :
 - to explain the strange behaviour of some bodies belonging to the Kuiper's belt;
 - Stabilize several orbits of transneptuniens bodies;
- Possible 10th planet allows to understand the abnormal behaviour of Kuiper's beltbodies and the Kuiper's cliff.

Oscillation symmetry predictions on 9th and 10th planets properties

Planet	Mass (e.u.)	mean orb. speed	equat. diam.	orbital eccentricity
9 (blue)	10*	$4.3 \ 6.2 \ 23.2$	3.3	0.0077 0.0158 0.044 0.055
10 (green)	0.5^{*}	$5.15\ 24.2\ 29\ 37.6$	$0.8~(0.5^*)$	$0.065 \ 0.0175 \ 0.0435 \ 0.056$

Indications of their Density, plan tilting, Rotation duration, revolution period

Study of solar moons, rings, Mass of the 7th planet around TRAPPIST-1 star

S. Rouat, A la recherche des planètes neuf et dix Sciences et Avenir **850**, 42 (2017)

P. Caughill, Futurism (2017), University of Arizona

Conclusions

- Regular oscillations observed in particle and nuclei, masses and widths, provided they belong to the same family and same spin.
- Observed also in *astrophysical bodies*.
- One body property (pendulum ...) is extended to several bodies, as if they belong to one common entity.
- Hadronic and nuclear excited state masses are solution of a Schrödinger-like equation. What is the corresponding equation underlying the astrophysical properties ?
- The forces acting in these different fields are very different: the common property is the existence of opposite interactions.

Solar Planets, Moons, Rings

Hadronic oscillatory period variations

Λ baryons

Λ(2000)

Successive mass difference versus mean adjacent masses

Width versus mean adjacent masses

M(2000) 0^{??}, (Γ imprecise)

Tentative prediction of the $\Lambda(2000)$ spin: no clear attribution

Hadronic period variations

P(m)=1.41 J P(Γ)=0.94 J

P(m)=0.94 J P(Γ)=1.16 J

It is not possible to fit all data with a unique function

Period of Nuclear mass oscillations

Nuclear oscillatory period variations

