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• Cross sections and neutron width fluctuations in the n + 194Pt reaction. 
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Statistical model of compound nucleus reactions

• Compound nucleus (CN): complex, equilibrated system of 
projectile + target.

resonances all have spin/parity 1/2+. These resonances
correspond to excited states of the “compound nucleus”
233Th with an excitation energy slightly above the neu-
tron separation energy of 4.786 MeV !the “neutron
threshold”". The number of resonances observed in each
compound nucleus was limited by the resolution of the
spectrometer and was never much larger than 200. Simi-
lar data on proton resonances at the Coulomb barrier in
lighter nuclei were later taken by the Triangle Universi-
ties group !Wilson et al., 1975". Together these data form
what has been called the “nuclear data ensemble” by
Haq et al. !1982" and Bohigas et al. !1983".

Bohr argued that the existence of numerous narrowly
spaced and narrow compound-nucleus resonances was
incompatible with independent-particle motion and was
due to strong nucleon-nucleon interactions. Indeed, as-
suming an independent-particle model with a nuclear ra-
dius of about 5 fm and a potential well depth of several
10 MeV, one finds that the single-particle states have a
typical spacing of several hundred keV and widths of the
order of 10 keV or larger, in complete disagreement
with the data. To account qualitatively for the data,
Bohr proposed his compound-nucleus model !Fig. 2":
The incident nucleon carries kinetic energy !as indicated
by the billiard cue", collides with the nucleons in the
target, and shares its energy with many nucleons. In
units of the time for passage of the nucleon through the
nuclear interior, it takes the system a long time until one
of its constituent nucleons acquires sufficient energy to
be reemitted from the system.

Bohr’s idea that the nucleus is a complex, strongly in-
teracting system was adopted by the community and
held sway until the discovery of the nuclear shell model
in 1949. Bohr’s idea almost certainly motivated Wigner
to introduce random matrices. To explain the spirit of
the approach, we focus attention on nuclear levels with
the same quantum numbers !total spin J, parity !, and,
at least in light nuclei, total isospin T" and ask the fol-
lowing: Can we identify generic spectral properties of a
system with strong interactions? Figure 3 shows six spec-
tra, all having the same total number of levels, and span-
ning the same total energy interval, and therefore having
the same average level spacing. The spectra differ only
in the way the spacings between neighboring levels are
distributed. For the one-dimensional harmonic oscillator
!the rightmost spectrum", all spacings are identical. The
spacing distributions differ more and more from a delta
function as we go ever more to the left. The random-
matrix approach characterizes spectra by their fluctua-
tion properties: The distribution of spacings of nearest
neighbors is the first and obvious measure for spectral

FIG. 1. The total neutron cross section on 232Th vs neutron
energy E n in eV. From Neutron Cross Section, 1964, as repro-
duced in Bohr and Mottelson, 1969, Vol. 1, p. 178.

FIG. 2. Bohr’s wooden toy model of the compound nucleus.
From Nature, 1936.

FIG. 3. Six spectra with 50 levels each and the same mean
level spacing. From right to left: The one-dimensional har-
monic oscillator, a sequence of zeros of the Riemann zeta func-
tion, a sequence of eigenvalues of the Sinai billiard !see Sec.
II.F", a sequence of resonances seen in neutron scattering on
166Er, a sequence of prime numbers, and a set of eigenvalues
obeying Poisson statistics !see Sec. II.F". From Bohigas and
Giannoni, 1984.

541H. A. Weidenmüller and G. E. Mitchell: Random matrices and chaos in nuclear physics: …
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Bohr, Nature (1936)
• Statistical model: CN Hamiltonian is a random matrix 

from the Gaussian Orthogonal Ensemble (GOE).

• CN resonance energies and widths exhibit local fluctuations  
that are independent of system-specific details.

analyzing the fluctuations is to consider the Fourier
transform of the autocorrelation function of the conduc-
tance, i.e., the power spectrum S(fk) of G!G(kF). If
the autocorrelation of the conductance vs energy is a
Lorentzian of width !, then S(fk)"e"2#!!fk!/$vF (where
vF is the Fermi velocity). This exponential behavior is
demonstrated in Fig. 6(d) for S(fV), the power spectrum
of the conductance vs gate voltage (changing the gate
voltage is equivalent to changing the Fermi energy). For
ballistic dots we can give a semiclassical interpretation
of !: in an open chaotic system the classical escape time
is distributed exponentially, with a characteristic mean
escape time of %escape!$/! .

The cross section of a nuclear reaction is proportional
to the squared S-matrix element between the entrance
and exit channels. An analogous situation exists in co-
herent transport through open quantum dots. The for-
mulation of conductance in coherent systems was pio-
neered by Landauer (1957, 1970) and refined by Imry
(1986b) and Büttiker (1986a). They described the con-
ductance as a scattering process and expressed it directly
in terms of the total transmission through the sample.3

The total transmission is the sum over squared S-matrix
elements between all entrance and exit channels. The
average conductance is then expected to increase lin-
early with the number of open channels, as can be seen
in Fig. 6(c). However, the magnitude of the fluctuations
is &e2/h , independent of the average conductance. The
nuclear cross-section fluctuations are also universal, al-
though since the measured cross section corresponds to
a specific selection of exit and entrance channels, the
size of the fluctuations is comparable to the average.

In recent years the experimental focus has shifted
from open to closed dots, where the statistical behavior
of individual wave functions can be probed. In closed
dots the transmission coefficients are small, Tc#1, and
according to Eq. (1), !#' (assuming a small number of
channels). This is the regime of isolated resonances,
analogous to the compound-nucleus regime of isolated
neutron resonances just above the neutron threshold.
Such narrow resonances were observed in the total cross
section to scatter thermal neutrons from heavy nuclei.
Figure 7(a) shows such resonances for the reaction n
$232Th. The distribution of the widths of these reso-
nances is shown on a log-linear scale in Fig. 7(b) and is
well described by the so-called Porter-Thomas distribu-
tion (solid line) predicted by RMT. It is given by P(!̂)
"!̂"1/2e"!̂/2, where !̂ is the width measured in units of
the average width.

In closed dots the conductance is not a smooth func-
tion of the gate voltage as in open dots, but instead ex-
hibits Coulomb-blockade peaks [see, for example, Fig.
7(c)]. The spacings between these peaks are almost uni-

form because they are dominated by the large charging
energy, in contrast to the nuclear case, where the spac-
ings between the observed resonances fluctuate widely.
Moreover, the observed conductance peak widths in
closed dots are all &kT because of thermal broadening.
However, the peak heights exhibit order-of-magnitude
fluctuations, as can be seen in Fig. 7(c). These peak fluc-
tuations are determined by the spatial fluctuations of the
individual resonance wave functions in the vicinity of
the leads. The statistical approach to Coulomb-blockade
peak heights was developed by Jalabert, Stone, and Al-
hassid (1992). They used R-matrix theory—originally in-
troduced by Wigner and Eisenbud (1947) for nuclear
reactions—to relate the Hamiltonian of the closed sys-
tem to the scattering resonances of the weakly open sys-
tem, and then applied an RMT approach to quantify the
wave-function fluctuations. The conductance peak-
height distributions were found to be universal and sen-
sitive only to the space-time symmetries of the dot.
These distributions were measured a few years later
(Chang et al., 1996; Folk et al., 1996) and were in agree-
ment with the theoretical predictions. The distribution
of the conductance peak heights in the absence of mag-
netic field is shown in Fig. 7(d). This is the case of con-

3It is interesting to note that Landauer’s formula can be de-
rived from Weisskopf’s formula (1) by applying the latter to
the leads instead of the dot (where the leads are considered as
decaying quantum systems emitting electrons); see Bertsch
(1991).

FIG. 7. Neutron-resonance-width statistics in the compound
nucleus [panels (a) and (b)] and Coulomb-blockade peak sta-
tistics in closed quantum dots [panels (c) and (d)]: (a) a series
of neutron resonances in the total cross section (T (in barns)
of n $232Th as a function of the incoming neutron energy En
(in eV) (from Brookhaven National Laboratory, 1964); (b) dis-
tribution of the normalized neutron resonance widths !̂

!!/!̄ using a log-linear scale [223 neutron resonances in 233Th
are included from the measurements of Garg et al. (1964)]; the
solid line is the Porter-Thomas distribution P(!̂)"!̂"1/2e"!̂/2

predicted by RMT; (c) a series of Coulomb-blockade peaks
observed in the conductance G of closed GaAs/AlGaAs dots
(with N&1000 electrons) as a function of gate voltage Vg at
zero magnetic field (Folk et al., 1996); (d) distribution of the
normalized conductance peak heights Ĝ!G/Ḡ (histogram) on
a log-linear scale; 600 peaks are included, of which only &90
are statistically independent. The solid line is the theoretical
prediction based on RMT (Jalabert, Stone and Alhassid, 1992)
and contains no free parameters. Notice the agreement with
the experiment over almost three orders of magnitude.

902 Y. Alhassid: Statistical theory of quantum dots

Rev. Mod. Phys., Vol. 72, No. 4, October 2000

Alhassid, RMP (2000)

Mitchell, Weidenmüller, and Richter, RMP (2010).

• Widely used in statistical reaction calculations.

• Modifies Hauser-Feshbach theory of CN reactions 
through width fluctuation correction factor.

- Enhances elastic channels; decreases other open channels.
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Violation of Porter-Thomas Distribution in Platinum

• For isolated resonances, widths for any reaction channel should 
fluctuate according to the Porter-Thomas distribution (PTD). 

• Neutron resonance widths are considered compelling evidence for 
PTD, especially the Nuclear Data Ensemble.

• Evidence in other quantum chaotic systems described by the GOE, 
e.g. microwave stadium billiard.

Porter and Thomas, Phys. Rev. (1956).

• Koehler et al. PRL (2010): neutron width fluctuations form neutron 
scattering off Pt isotopes are much broader than the PTD.

Haq, Bohigas, and Pandey, PRL (1982).
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matrix of the cavity (i.e., without the cables) from the ex-
pression

S,b(cu) = B,b —ig, . (3)
p, clap A)~ + 2I ~

From this expression, we have calculated the autocorrela-
tion functions

C, (e) = S„(o))S,",(cu + e) —iS„i (4)
for c = 1, 2, and 3. Here, the overbar denotes the average
over ~. The result for c = 1 is shown as circles in the
upper part of Fig. 4. Since the individual experimental
points are highly correlated, we could not attribute error
bars to these points individually in a meaningful way. We
have used instead the method described by Efron [9]. We
have considered the experimental set of 5 && 938 resonance
parameters (I"~i, I ~2, I ~3, I„,co~) as the ensemble from
which to construct random scattering matrices. Hence,
938 parameter 5-vectors were drawn at random from the
ensemble (with the possibility of having the same vector
drawn several times). This set was used in Eqs. (3) and
(4). Repeating this procedure 10 times we found that the
functions C, (e) are restricted to the shaded band.
The shape of the shaded band differs markedly but not

unexpectedly [10] from that of a Lorentzian with width
(I „)shown as a solid line in the upper part of Fig. 4.
The contribution of each individual resonance to the cor-
relation functions (4) is, of course, Lorentzian in shape.
However, different resonances contribute Lorentzians of
different widths, so that the average over all resonances
does not have Lorentzian shape. This effect can be seen
only if the total width shows marked fluctuations. Hence,
(i) the number M of open channels must be small, and
(ii) the ratio (I„„,~~)/(I'~) must be small compared
to unity. In the microwave experiment of Ref. [11]—
performed at room temperature —condition (ii) was vio-
lated. The data did not display the non-Lorentzian line
shape [12] although condition (i) was well satisfied (M =

FIG. 4. Upper part: Autocorrelation function (circles) C2(e);
the shaded band indicates the errors. The dashed and the
solid lines represent the GOE prediction and a Lorentzian,
respectively. Lower part: Fourier transform of C2(e), errors
indicated by the shaded band. The full line is the I.ourier
transform of the Lorentzian, and the dashed curve is the GOE
prediction.

1). The non-Lorentzian shape is a quantum phenome-
non. Indeed, in the semiclassical approximation, we have
M )& 1 and purely exponential decay. Moreover, in the
classical limit a chaotic billiard with a small hole shows
exponential time decay, as expected from ergodicity. For
the Sinai billiard, this was shown in Ref. [13]. For the
stadium, we have verified it numerically.
The result displayed in the upper part of Fig. 4 is

quantitatively compatible with the GOE model [14] for
resonance reactions. In the limit of isolated resonances
this model yields [cf. Eq. (8) of Ref. [15]]

T
C,.(e) = — dx i

' exp i i 7r x11. (5)— —
2 0 &1+T i d

Here, d is the mean level distance. For isolated reso-
nances, the "transmission coefficients" are given by T,. =
27r(I'„,)/d. The symbol II stands for P, , (1 + T,x)
In the analysis of the level correlation function for the

stadium billiard performed in Ref. [6], the "bouncing ball
orbits" of the stadium played a significant role: These
orbits modulate the average level density on a scale of
several mean level spacings d. In the S-matrix correlation
functions displayed in Fig. 4, the bouncing ball orbits are
conspicuously absent. This is because these correlation
functions are significantly different from zero only in an
interval much smaller than d.
It is instructive to investigate the Fourier transform

g, (r) of the autocorrelation function C,. (e) defined in
Eq. (5),

g, (r) = 3 (I„,.) (1 + 2(l „,.)t) 11',

Alt et al. PRL (1995)
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• Other statistical model violations observed in reanalysis of the 
NDE and in total gamma width distributions.

Koehler, PRC (2011). 
Koehler et al. PRC (2013).



Statistical Model Explanations

1. Energy dependence of neutron strength function changed by near-
threshold bound or virtual state of neutron channel potential 
[Weidenmüller PRL 2010].

• Evidence: peak in the NSF near Pt.

conventional E1/2

near-threshold bound 
or virtual state
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2. Non-statistical interactions of the resonances due to coupling 
to the neutron channel perturbs the GOE [Celardo et al. PRL 
(2011), Volya et al. PRL (2015), Bogomolny PRL (2017)].

H
e↵ = H

GOE +�� i⇡WW
T

<latexit sha1_base64="8a5hpRZjo81T1cmabH72WLQhGV0="></latexit><latexit sha1_base64="8a5hpRZjo81T1cmabH72WLQhGV0="></latexit><latexit sha1_base64="8a5hpRZjo81T1cmabH72WLQhGV0="></latexit><latexit sha1_base64="8a5hpRZjo81T1cmabH72WLQhGV0="></latexit>

effective Hamiltonian 
of CN resonances

GOE Hamiltonian of 
bound CN states

real (imaginary) shift due to off 
(on)-shell couplings to channels

• Explanations have not been assessed together in a realistic model.  
Origin of observed PTD violation still an open question
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Realistic resonance-reaction model

channel 
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• Neutron channel represented on a spatial mesh with a 
Woods-Saxon potential.  

• CN states have GOE spectrum with a constant imaginary 
shift to describe gamma decay.  

• Channel coupled to CN states at one interaction point.  
Coupling strengths have a Gaussian distribution.  

• Able to calculate resonance energies and widths, as well 
as cross sections, within the same framework.  

• Based on Mazama code of G. F. Bertsch. 

Bertsch, Brown, and Davis, arXiv:1804.00364 (2018).
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n + 194Pt: Baseline Model

Model cross sections agree with JEFF-3.2 library and 
experimental cross section [Koehler and Guber, PRC (2012)]. Average neutron width matches the E1/2 expectation.

• Woods-Saxon: V0 = -44.54 MeV, r0 = 1.27 fm, a0 = 0.67 fm from Bohr and Mottelson.

• Average resonance spacing D = 82 eV, gamma width Γγ = 72 meV from RIPL-3.

• Average coupling strength parameter v0 = 11 keV-fm1/2 tuned to match RIPL-3 
neutron strength function at 8 keV neutron energy.
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Baseline neutron width fluctuations

histogram is model  
solid line is PTD

• Reduced neutron width:  

• Reduction A: average neutron width taken from model.  

• Reduction B: assumes  

• Figure shows distribution of y = ln(x), x = �/h�i

�n,r = �n,r/h�ni(Er)

h�ni(E) / E1/2
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Parameter variation
• Reducing neutron channel potential depth by a 

few MeV creates a near-threshold bound or 
virtual state of the channel.  

• Modifies the E1/2 behavior of the average width, 
agrees with the formula of Weidenmüller:  

• The reduced width distribution extracted with 
the E1/2 form is broader than PTD.  

• Results insensitive to physically large changes in 
average channel-CN coupling.

histogram is model  
solid line is PTD

results for E0 = 0
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Summary and Conclusions
• In our realistic model, the PTD describes the neutron width fluctuations well if the energy 

dependence of the average neutron width is correctly described.  

• This study excludes explanations for the observed PTD violation based on coupling to the 
neutron channel.  

• Within a reasonable parameter range, there can be a near-threshold bound or virtual state of 
the neutron channel.  In this case, using the E1/2 form will produce PTD violation.  Near-
threshold state must be within a few keV to have a significant effect.   

• A reanalysis by the experimentalists [Koehler et al. arXiv:1101.4533 (2011)] found that 
using this state did not improve their agreement with the PTD.  Problem with multilevel R-
matrix analysis?  

• The elastic and total cross sections are quite sensitive to the existence of such a state.  

• More experimental investigation into resonance width statistics would be useful to explore 
possible breakdowns of statistical model. 

Thank you for your attention!
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Extra Slides
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Resonance determination
• To find the complex resonance wavenumbers kr, solve 

Schrödinger equation with appropriate boundary 
conditions 

- neutron wavefunction is regular at origin. 

- neutron wavefunction is purely outgoing. 

• With discretized approach, obtain a  nonlinear 
eigenvalue problem (NEVP). 

• Solve NEVP with an iterative method to find resonance 
wavenumbers kr. 

• Find resonance energies, total widths, and neutron 
widths from wavenumbers.   

• Can calculate elastic and capture cross sections [details 
in additional slides].

u(r) ! B(k)eikr

) u(Nn + 1) = u(Nn)e
ik�r

Er �
i

2
�r =

~2k2r
2m

�n,r = �r � ��

for large r

u(0) = 0

M(k)~u = [H� E � teik�r
C]~u

Cij = �i,Nn�ijt = ~2/2m�r2 ,
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Non-statistical interactions
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H
e↵ = H

GOE +�� i⇡WW
T
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effective Hamiltonian 
of CN resonances GOE Hamiltonian of 

bound CN states
real (imaginary) shift due to off 
(on)-shell couplings to channels


