Effects of Nucleon Correlations on Nuclear Structure and Reactions

Anton N. Antonov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

15th Varenna Conference on Nuclear Reaction Mechanisms
11-15 June 2018
Theoretical Correlation Methods Used:

- The Coherent Density Fluctuation Model (CDFM) [Sofia, 1979-till now]
 based on the delta-function approximation for the overlap and energy kernels of the Generator Coordinate Method

- The Generator Coordinate Method

- The Jastrow Correlation Method

- The Natural Orbital and Overlap Functions Representations

- The Nuclear Density Functional Theory

...and others
Coherent Density Fluctuation Model (CDFM)

\[\rho(r, r') = \int_0^\infty dx |\mathcal{F}(x)|^2 \rho_x(r, r') \]
(1)

\[\rho_x(r, r') = 3\rho_0(x) j_1(k_F(x)|r - r'|) \Theta \left(x - \frac{|r + r'|}{2} \right) \]
(2)

\[k_F(x) = \left(\frac{3\pi^2}{2} \rho_0(x) \right)^{1/3} \equiv \frac{\beta}{x} ; \quad \rho_0(x) = \frac{3A}{4\pi x^3} \]
(3)

\[\beta = \left(\frac{9\pi A}{8} \right)^{1/3} \simeq 1.52A^{1/3} \]
(4)

\[\rho(r) = \int_0^\infty dx |\mathcal{F}(x)|^2 \rho_0(x) \Theta(x - |r|) \]
(5)

\[|\mathcal{F}(x)|^2 = -\frac{1}{\rho_0(x)} \left. \frac{d\rho(r)}{dr} \right|_{r=x} ; \quad \left(\frac{d\rho}{dr} \leq 0 \right) ; \quad \int_0^\infty dx |\mathcal{F}(x)|^2 = 1 \]
(6)

\[n(k) = \int_0^\infty dx |\mathcal{F}(x)|^2 \frac{4}{3} \pi x^3 \Theta(k_F(x) - |k|) \]
(7)
Nucleon momentum distribution for ^4He: the black squares are the exp. data, the exp (S)-method (dotted line), the correlation method of Akaishi (curve 1) and the CDFM (curve 2). Normalization: $\int n(k)dk = 1$

Spectral functions for ^{40}Ca in CDFM

Natural Orbitals

- Löwdin (1955)

\[
\rho(r, r') = \sum_{\alpha} N_{\alpha} \psi^*_\alpha(r) \psi_\alpha(r')
\]

(1)

\[0 \leq N_{\alpha} \leq 1, \quad \sum_{\alpha} N_{\alpha} = A \]

(2)

\[
\rho(r) = \sum_{\alpha} N_{\alpha} |\psi_\alpha(r)|^2
\]

(3)

\[
n(k) = \sum_{\alpha} N_{\alpha} |\psi_\alpha(k)|^2
\]

(4)

\[\{\psi_\alpha(r)\}: \text{complete orthonormal set} \]

\[
\int \rho(r, r')\psi^*_\alpha(r')dr' = N_{\alpha} \psi_\alpha(r)
\]

(5)

\[
\int \rho(k, k')\psi^*_\alpha(k')dk' = N_{\alpha} \psi_\alpha(k)
\]

(6)
Overlap Functions

- One-body overlap functions

\[\phi_\alpha(r) = \langle \Psi_\alpha^{(A-1)} | a(r) | \Psi^{(A)} \rangle \] \hspace{1cm} (1)

Spectroscopic factor:

\[S_\alpha = \langle \phi_\alpha | \phi_\alpha \rangle \] \hspace{1cm} (2)

\[\tilde{\phi}_\alpha(r) = S_\alpha^{-1/2} \phi_\alpha(r) \] \hspace{1cm} (3)

\[\rho(r, r') = \sum_\alpha \phi^*_\alpha(r) \phi_\alpha(r') = \sum_\alpha S_\alpha \tilde{\phi}^*_\alpha(r) \tilde{\phi}_\alpha(r') \] \hspace{1cm} (4)

\[\phi_{n_0 l_j}(r) = \frac{\rho_{l_j}(r, a)}{C_{n_0 l_j} \exp(-k_{n_0 l_j} a)/a} \] \hspace{1cm} (5)
FIG. 1. Overlap functions (solid line), self-consistent Hartree-Fock single-particle wave functions (dot-dashed line), and natural orbitals (dashed line) for the nucleus 40Ca.
\(\Phi_{a_0J\Sigma L \Pi L_R}(r, R) \)

\[\frac{\rho_{J\Sigma L \Pi L_R}^{(2)}(r, R; a, b)}{\Phi_{a_0J\Sigma L \Pi L_R}(a, b)} = \frac{\rho_{J\Sigma L \Pi L_R}^{(2)}(r, R; a, b)}{N \exp\{-k\sqrt[4]{b^2 + (1/4)a^2}\}[b^2 + (1/4)a^2]^{-5/2}}. \]

(25)

Removal of \(^1S_0 \) and \(^3P_1 \) (pp) pairs from \(^{16}\text{O}(e,e'pp)^{14}\text{C}_{\text{g.s.}} \)

Partial waves: \(2S+1 \ell _L \); \(\overrightarrow{L} = \overrightarrow{l} + \overrightarrow{L}_R \)

FIG. 1. The 3S_0 two-proton overlap functions for the nucleus ^{16}O leading to the 0^+ ground state of ^{14}C extracted from the JCM (left) and uncorrelated (right) two-body density matrices.

FIG. 2. The 3P_1 two-proton overlap functions for the nucleus ^{16}O leading to the 0^+ ground state of ^{14}C extracted from the JCM (left) and uncorrelated (right) two-body density matrices.
Exotic Nuclei (Structure)

Nuclear Symmetry Energy and Its Volume and Surface Components

\[E = -c_1 A + c_2 A^{2/3} + c_3' \frac{(N - Z)^2}{A} + \text{Coulomb term} + \text{pairing energy contribution} + \text{shell corrections} + \cdots \quad (1) \]

⇒ Feenberg (1947); Cameron (1957); Green (1958); Myers and Swiatecki (1966, 1969); Bethe (1971); Danielewicz; Dieperink and Van Isacker, E. Suraud, Agrawal, Viñas, De, Samaddar, Centelles; Tsang, Warda, and others

\[c_3' \equiv s = c_3 - \frac{c_4}{A^{1/3}} = c_3 \left(1 - \frac{\chi}{A^{1/3}} \right) \quad (2) \]

\[\chi = \frac{c_4}{c_3} \quad (3) \]

\[c_3 = \frac{s}{1 - \frac{\chi}{A^{1/3}}}, \quad c_4 = \chi \left(\frac{s}{1 - \frac{\chi}{A^{1/3}}} \right) \quad (4) \]
\[E_{\text{sym}} = \frac{a_a(A)}{A} (N - Z)^2 \] \hspace{1cm} (6)

- Agrawal et al. (2014); Myers and Swiatecki (1969); Lipparini and Stringari (1982); Jiang et al. (2012); P.-G. Reinhard et al. (2006)

\[a_a(A) = \frac{a^V_A}{1 + A^{-1/3} a^V_A a^S_A} \simeq c_3 - \frac{c_4}{A^{1/3}}, \] \hspace{1cm} (7)

(at \(A \geq 27 \))

if \(c_3 = a^V_A \) and \(c_4 = (a^V_A)^2 / a^S_A \).
\[s = \int_0^\infty dx |\mathcal{F}(x)|^2 S(\rho(x)) \] \hspace{1cm} (8)

\[\frac{a_A^V}{a_A^S} = \frac{3}{r_0 \rho_0} \int_0^\infty dx |\mathcal{F}(x)|^2 x \rho_0(x) \left\{ \frac{S(\rho_0)}{S(\rho(x))} - 1 \right\} \] \hspace{1cm} (9)

\[s \equiv a_\alpha(A) \] \hspace{1cm} (10)

Let

\[\kappa \equiv \frac{a_A^V}{a_A^S} \] \hspace{1cm} (11)

\[s = \frac{a_A^V}{1 + A^{-1/3} \kappa} \] \hspace{1cm} (12)

\[a_A^V = s(1 + A^{-1/3} \kappa) \] \hspace{1cm} (13)

\[a_A^S = \frac{s}{\kappa}(1 + A^{-1/3} \kappa) \] \hspace{1cm} (14)

- Considered Ni, Sn, and Pb isotopic chains
Exotic Nuclei (processes)

Microscopic optical potential; elastic scattering; breakup reactions

\[U_{opt}(r) = N_R V^F(r) + iN_I W^H(r) \] (1)

1. Direct and exchange parts of the real OP (ReOP)

Folding:

\[V^F(r) = V^D(r) + V^{EX}(r) \] (2)

\(V^D_{IS}, V^D_{IV}, V^{EX}_{IS}, V^{EX}_{IV} \)

\(v^D_{(00)(01)}(\rho, E), v^{EX}_{(00)(01)}(\rho, E) \) – M3Y effective interactions

2. Imaginary part of the OP (ImOP) within the high-energy approximation

\[W^H(r) = -\frac{1}{2\pi^2} \frac{E}{k} \bar{\sigma}_{NN} \int_0^\infty j_0(qr) \rho_p(q) \rho_t(q) f_{NN}(q) q^2 dq \] (3)

Superscaling in Electron- and Neutrino- Nuclei Scattering

PWIA; \((e, e' N)\):

\[
\left[\frac{d\sigma}{de' d\Omega' dp_N d\Omega_N} \right]^{PWIA}_{(e, e' N)} = K \sigma^{eN}(q, \omega; p, \mathcal{E}, \phi_N)S(p, \mathcal{E})
\] (1)

\[
F(q, \omega) \simeq \frac{[d\sigma/d\epsilon' d\Omega']_{(e, e')}}{\sigma^{eN}(q, \omega; p = |y|, \mathcal{E} = 0)}
\] (2)

RFG:

\[
f_{RFG}(\psi') \simeq \frac{3}{4} \left(1 - \psi'^2\right) \theta \left(1 - \psi'^2\right)
\] (3)

\[
S(p, \mathcal{E}) = \sum_i 2(2j_i + 1)n_i(p)L_{\Gamma_i}(\mathcal{E} - \mathcal{E}_i);
\] (4)

\[
L_{\Gamma_i}(\mathcal{E} - \mathcal{E}_i) = \frac{1}{\pi} \frac{\Gamma_i/2}{(\mathcal{E} - \mathcal{E}_i)^2 + (\Gamma_i/2)^2};
\] (5)

\((\Gamma_{1p} = 6 \text{ MeV and } \Gamma_{1s} = 20 \text{ MeV})\)

\[
\rho(r, r') = \sum_{\alpha} N_{\alpha} \varphi_{\alpha}^*(r) \varphi_{\alpha}(r'); \ [0 \leq N_{\alpha} \leq 1; \sum_{\alpha} N_{\alpha} = A];
\] (6)
Information on the nucleon momentum distributions from
the scaling function

– Amado, Woloshyn (1976–77):

\[n(k) \xrightarrow{k \to \infty} \left(\frac{\tilde{V}_{NN}(k)}{k^2} \right)^2 \]

(unknown if \(k\) or \(k/A\) must be large)

\[f(\psi') = 0.12 \left(\frac{1 + m}{2 + m} \right) \frac{1}{|\psi'|^{2+m}} \]

\[n(k) \sim \frac{1}{k^{4+m}}; \quad \text{Results: } m \simeq 4.5 \]

For \(m = 4\) \(V_{NN}(r) \sim \frac{1}{r}\) (at \(r \to 0\))

For \(m = 5\) \(V_{NN}(r) \sim \frac{1}{r^{1/2}}\) (at \(r \to 0\))

FIG. 4. Momentum distribution in the dilute Fermi gas model with realistic NN forces can serve as an "effective"

034319-4

distribution Eq. (13) for different values of

\[n \]

Therefore, we look for the proper value of \(n \). The factor \(0 \) \(k > k_F \)

normalization (for

we use

\(x \)

Finally, from Eq. (8) one can obtain the following expres-

\(\psi \)

\(k \)

\(N \)

is obtained by the total normalization of

\(f \)

\(\frac{4 \pi k_F^n}{\mu} \) [Eq. (2)] from Ref. [44], but for

\(m \)

\(f(k/k_F) \) \[\text{Eq. (2)} \] from Ref. [44], which, being a

\(m \)

\(\sim \)

\(1 \)

\(k \)

\(8 \) [25] which, being a

\(m \)

\(f(\psi') \) \[n(k) \sim 1/k^{4+m} \], \(m = 1 \ldots 5 \); Phys. Rev. C 75, 034319 (2007)
THANKS TO:
PROFESSOR EVGENYI V. INOPIN

KHARKOV PHYSICAL-TECHNICAL INSTITUTE, KHARKOV, UKRAINE
ACAD. ALEXANDER IL. AKHIEZER

HEAD OF THE THEORETICAL DEPARTMENT OF THE PHYSICAL-TECHNICAL FACULTY OF THE KHARKOV STATE UNIVERSITY

★ THE FIRST Ph.D STUDENT OF L.D. LANDAU
★ LECTURES IN QUANTUM MECHANICS
★ BOOKS ON: QUANTUM ELECTRODYNAMICS (with V.B. Berestetskii);
PROBLEMS OF NUCLEAR THEORY (with I.Ya. Pomeranchuk); ELECTRODYNAMICS IN NUCLEI (with M.P. Rekalo);
 PLASMA THEORY ETC...
Professor M.P. Rekalo
Physics of Elementary Particles
Books: Electrodynamics of Hadrons
Neutral Week Currents
PROF. IVAN ZH. PETKOV

HE CREATED THE NUCLEAR THEORY GROUP IN INRNE BAS IN 1972 AND WAS THE HEAD OF THE GROUP TILL 1995

PROF. PETER E. HODGSON

HEAD OF THE NUCLEAR THEORY GROUP IN THE NUCLEAR PHYSICS LABORATORY OF THE OXFORD UNIVERSITY, OXFORD, ENGLAND
*** COLLABORATORS AND COAUTHORS:

• Prof. Ivan Zh. Petkov, Prof. Vladimir Nikolaev, Prof. Mario Stoitsov, Prof. Sevdalina Dimitrova, Assoc.Prof. Vladimir P. Garistov, Assoc.Prof. Mitko Gaidarov, Assoc.Prof. Dimitre Kadrev, Assoc.Prof. Martin Ivanov, Assoc. Prof. Galina Krumova, Assist.Prof. Kornelia Spasova, Dr. Lilia Marinova, Dr. Emil Nikolov, Assoc.Prof. Christo V. Christov, Dr. Kalin Drumev, Katyusha Pavlova, P. Jeleva, J. Kanev, I.S. Bonev, BULGARIA

• Prof. Peter E. Hodgson, ENGLAND

• Prof. Marilena Avrigeanu and Prof. Vlad Avrigeanu, Dr. I. Stetcu, Dr. A. Harangozo, ROMANIA

• Prof. Elvira Moya de Guerra, Prof. Jose M. Udias, Prof. Pedro Sarriguren, Prof. Juan A. Caballero, G.D. Megias, J.E. Amaro, I. Ruiz Simo, R. Gonzalez-Jimenez, SPAIN

• Prof. Valeri K. Lukyanov, Prof. L.P. Kaptar’, Dr. E.V. Zemlyanaya, Dr. K.V. Lukyanov, Dr. I.N. Kuhtina, A. Umnikov, Prof. N.S. Zelenskaya, Dr. L. Galanina, RUSSIA

• Prof. Michael Grypeos, Prof. Stelios Massen, Prof. G. Anagnostatos, Prof.G.A. Lalazissis, Dr. Ch.C. Moustakidis, Dr. C.P. Panos, Dr. P. Ginis, Dr. J. Giapitzakis, A. Vahlas, Dr. V.P. Psonis, K.N. Ypsilantis, Dr. C. Koutroulos, GREECE
*** COLLABORATORS AND COAUTHORS:

• Prof. Carlotta Giusti, Prof. Maria Barbaro, Prof. Franco D. Pacati, A. Meucci, ITALY

• Prof. Egle Tomasi - Gustafsson, FRANCE

• Prof. Herbert Muether, Prof. Horst Lenske, Prof. H.von Geramb, Prof. Klaus Goeke, GERMANY

• Prof. Dimitri Van Neck, BELGIUM

• Prof. T.W. Donnelly, Prof. M.B.Chadwick, U.S.A.

• Prof. Y. Watanabe, Prof. M. Kawai, Dr. K. Ogata, Dr. M. Kohno, JAPAN

• Dr. A.D. Polozov, Dr. A.M. Pushkash, Acad. A.G. Sitenko, Prof. N.M. Petrov, UKRAINE

• Prof. B. Slowinski, Dr. A. Malecki, POLAND

• Dr. K.M. Khanna, EGYPT
11th International Workshop on Nuclear Theory, Rila, Bulgaria, June 1992
Family
Alek, Anton Jr., Boris
Thank you!