Nom d'une particule!

- 12 particules élémentaires de matière
 - o 6 leptons
 - 3 leptons chargés (charge électrique : -1) : électron, muon, tau
 - 3 neutrinos, associés chacun à un lepton chargé: neutrino-électron, neutrino-muon, neutrino-tau
 - o 6 quarks
 - 3 de type up (charge électrique : +2/3) : up, charme, top
 - 3 de type down (charge électrique : -1/3) : down, strange, bottom
 - Les quarks ne sont pas libres, mais confinés au sein des hadrons
 - o Plus **12 antiparticules** : charges opposées, masses identiques, mêmes durées de vie
- 12 particules = **3 familles de 4 particules élémentaires, construites sur le même** modèle
 - o 1 lepton chargé, 1 neutrino, 1 quark de type up, 1 quark de type down
 - o 1^{ère} famille : matière ordinaire, stable
 - Famille 1 : électron, neutrino-électron, quark up, quark down
 - o 2ème et 3ème familles : particules instables, plus lourdes
 - Famille 2: muon, neutrino-muon, quark charme, quark strange
 - Famille 3: tau, neutrino-tau, quark top, quark bottom
- Ces particules sont appelées génériquement **fermions**
- Les particules élémentaires se différencient par leurs sensibilités aux interactions

Fermions	Leptons	Leptons chargés	Électron e
			Muon μ¯
			Tau $ au^-$
		Leptons neutres	Neutrino-électron $\nu_{\rm e}$
			Neutrino-muon ν_{μ}
			Neutrino-tau v_{τ}
		Quarks	Quark up u
			Quark charm c
			Quark top t
			Quark down d
			Quark strange s
			Quark bottom b

- Infiniment petit : 3 interactions fondamentales
 - o Electromagnétisme, interaction forte, interaction faible
 - o Gravitation : négligeable et décrite par un formalisme complètement différent
 - o A chaque interaction est associée une charge une particule est sensible à une interaction si sa charge correspondante est non nulle

 Les interactions sont transmises par des particules élémentaires, les bosons médiateurs

• Electromagnétisme

- o Electricité et chimie
- o Portée infinie
- o Leptons chargés et quarks
- o Charge : charge électrique
- o **Boson médiateur : le photon** (masse nulle)

• Interaction forte

- o Stabilité des noyaux
- o Portée : 10^{-14} m (taille d'un nucléon)
- Quarks uniquement
- o Charge: couleur
- o **Bosons médiateurs : 8 gluons** (masse nulle)

• Interaction faible

- o Désintégration bêta
- o Portée : 10⁻¹⁷ m
- o Leptons chargés, neutrinos, quarks
- o Charge : charge faible
- o Bosons médiateurs : 2 chargés (W⁺ et W[−]), 1 neutre (Z⁰) ; tous les 3 massifs.

• Dit autrement :

- Les quarks sont les seules particules élémentaires sensibles aux 3 interactions
- Les leptons chargés sont sensibles aux interactions électromagnétique et faible
- o Les neutrinos ne sont sensibles qu'à l'interaction faible

Bosons	Interaction électromagnétique	Photon γ
	Interaction faible	Boson Z ⁰
		Boson W ⁺
		Boson W ⁻
	Interaction forte	Gluons g
	Champ de Brout- Englert-Higgs	Boson de Higgs H

• Mécanisme de Brout-Englert-Higgs

- o Le champ de Higgs donne leurs masses aux particules élémentaires
- o Très grande diversité de ces masses ; raison(s) inconnue(s)
- Le boson de Higgs (boson H) est la particule associée au champ de Higgs
- o Ce n'est pas une interaction fondamentale supplémentaire

• Dans les détecteurs, on rencontre

- o Des **leptons**, chargés (électron, muon, tau) ou neutres (les neutrinos)
- o Des hadrons, formés de quarks

- **Mésons**: paires quark-antiquark (exemples : les pions et les kaons)
- Baryons: assemblage de 3 quarks (exemples: le proton u-u-d et le neutron u-d-d)
- o Des bosons médiateurs des interactions
- o Des **bosons de Higgs**

Fermions		Hadrons	Baryons
Bosons			Mésons

- Une particule peut s'annihiler avec son antiparticule (conversion simultanée en énergie, laquelle se recombine ensuite en d'autres particules).
- L'énergie disponible lors d'une collision permet de **créer des paires particule**antiparticule.
- Seuls les électrons, les muons, les protons, les neutrons, les pions et les kaons sont mesurés directement dans les détecteurs comme ceux du LHC: ils les traversent et y laissent des traces. Les neutrinos ne laissent aucune trace dans les détecteurs mais ils sont identifiables indirectement en faisant le bilan des énergies et des impulsions de la collision.
- Les autres particules se désintègrent presque immédiatement après avoir été produites ; on les observe indirectement en étudiant leurs produits de désintégration.