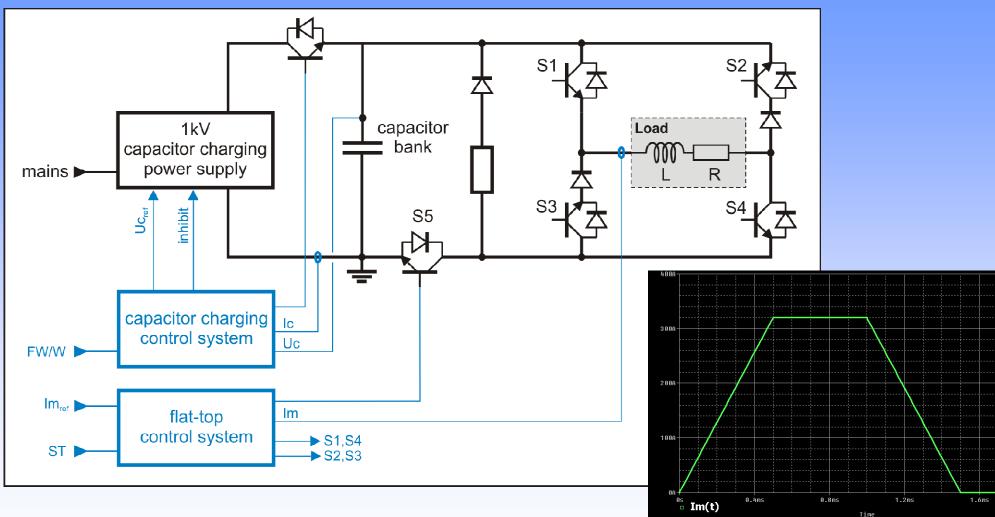
LINAC4 Quadrupole Power Converters

TE-EPC J.M. CRAVERO

06.10.2009

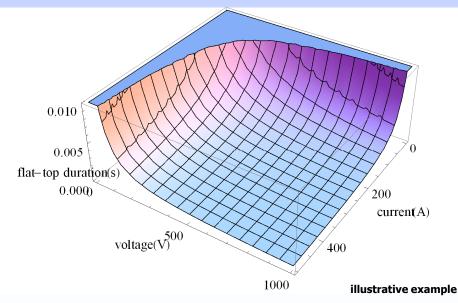
Requirements


• Requirements summary

	application	DTL-CCDTL-PIMS	DTL-CCDTL-PIMS	PSB - TL			
magnet	magnet number (serial)	1	2				
	maximum operating current	100 A	100 A				
	inductance	10.8 mH	21.6 mH				
	resistance	0.38 Ω	0.76 Ω				
cable +filter	inductance	0.12 mH	0.18 mH	0.09 mH			
	resistance	0.5 Ω	0.6 Ω	0.35 Ω			
power converter	power converter type	Maxidiscap III	Maxidiscap III	Maxidiscap III			
	precision during flat-top	~1000 ppm	~1000 ppm	~1000 ppm			
	operating voltage	600 V	900 V				
	flat top duration	2 ms	2 ms	1 ms			
	repetition rate	2 Hz	2 Hz	1.1 Hz			
	quantity (workpackage)	23	0	16			

- PSB-TL quads parameters are under study
- DC cabling has been considered but the cable definition is not done
- an output filter has been added to suppress overvoltages on the load due to cable length
- a flat-top of 2ms duration has been considered for the converter design
- final quantities are still under discussion

Maxidiscap Topology

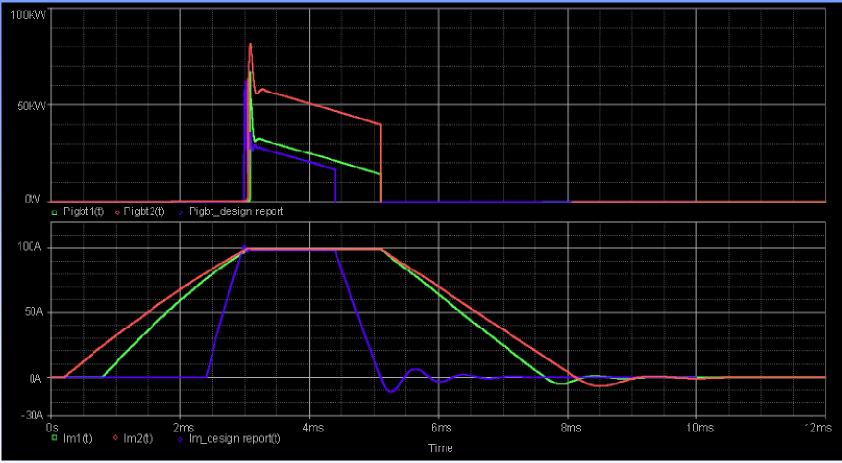

Converter topology

- S1, S2, S3, S4 are used to ramp the current (up or down)
- S5 is used in linear mode to produce the flat-top

Maxidiscap Limitations

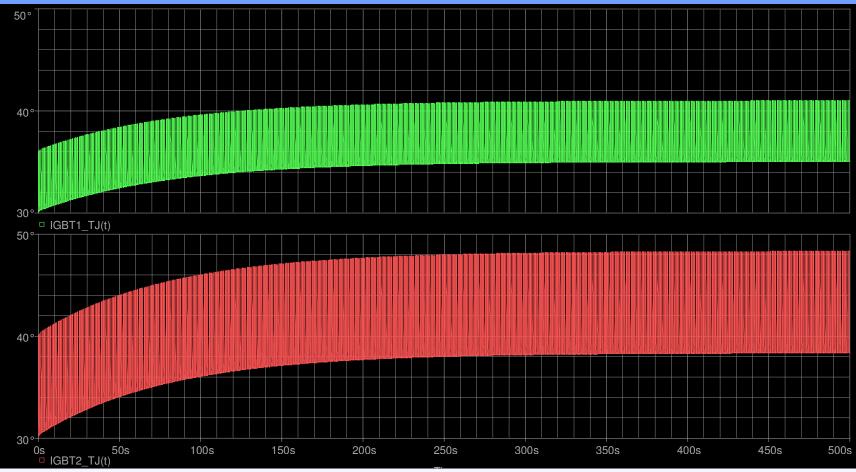
- Maxidiscap converters are pulsed power converter with a linear stage, some limitations are inherent to this topology
 - the average power that can be dissipated in the linear stage is limited by the cooling
 - the power dissipated in the linear stage leads to thermal cycling in the IGBT and may imply limited lifetime expectancy for the device
 - the energy stored in the capacitor bank that is transferred to the load during the discharge is limited
 - → the maximum flat-top duration is a function of the maximum operating current, the charging voltage and the load parameters.

Simulations, junction temperature and expected lifetime


DTL-CCDTL-PIMS quadrupoles : waveforms with 2ms flat-top

- green \rightarrow load = 1 magnet Uc=600V \rightarrow
- red \rightarrow load = 2 magnets serially connected Uc=900V

Simulations, junction temperature and expected lifetime


DTL-CCDTL-PIMS quadrupoles : change from design report

- green \rightarrow 1 magnet (actual) Uc=600V flat-top duration=2ms
- red → 2 magnets in serie (actual) Uc=900V flat-top duration=2ms
- blue → 1 magnet (design report) Uc=400V flat-top duration=1.4ms

IGBT junction temperature and expected lifetime

DTL-CCDTL-PIMS: IGBT junction temperature

- green (1 magnet 2ms flat-top) $\rightarrow \Delta Tj = 6^{\circ} MaxTj = 41^{\circ}$
- red (2 magnets 2ms flat-top) → ∆Tj = 10° MaxTj= 49°
- \rightarrow with such values, thermal cycling has not effect on lifetime expectancy

Technical Design Summary

	application	DTL-CCDTL-PIMS	DTL-CCDTL-PIMS	PSB - TL
magnet	magnet number (serial)	1	2	
	maximum operating current	100 A	100 A	
maç	inductance	10.8 mH	21.6 mH	
	resistance	0.38 Ω	0.76 _Ω	
cable +filter	inductance	0.12 mH	0.18 mH	0.09 mH
cal +fil	resistance	0.5 Ω	0.6 Ω	0.35 Ω
rter	power converter type	Maxidiscap III	Maxidiscap III	Maxidiscap III
IVe	operating voltage	600 V	900 V	
power converter	flat top duration	2 ms	2 ms	1 ms
wer	repetition rate	2 Hz	2 Hz	1.1 Hz
d	quantity (workpackage)	23	0	16
	rise time	2.2 ms	2.8 ms	
	di/dt	45.5 kA/s	35.7 kA/s	
owe	flat-top	2 ms	2 ms	
output current and power	fall time	2.6 ms	3.2 ms	
	P peak flat-top	40.0 kW	60.0 kW	
	Max. Junction temp.	41 º	49 ^o	
	Delta TJ simulated (per pulse)	6 ^o	10 ^o	
	Irms (100A-2ms flat-top)	9.5 A	10 A	
	Pmagnet (100A-2ms flat-top)	34 W	38 W	
	Irms (80A-1.5ms flat-top)	6.9 A	7.4 A	
	Pmagnet (80A-2ms flat-top)	18 W	21 W	

- RMS values are compatible with magnet design
- TL quads : the goal is to use the same converter design for both magnets parameters

Power Converter Modifications

- Same converters have been used in Linac II, Linac III and LEIR but some modifications are necessary to allow flat-top with extended duration
- Power crate
 - the capacitor bank has to be increased to 1000uF
 - capacitor charger replacement have to be studied
 - some modifications have to be foreseen (cabling, IGBT driver , etc...)
 - test with filter, cables and dummy load have to be performed
 - compatibility with previous versions must be kept
- Electronic crate
 - FGC3 integration
 - flat-top control with anti-windup system has to be evaluated

Basic Planning

	Q4 2009	Q1 2010	Q2 2010	Q3 2010	Q4 2010	Q1 2011	Q2 2011	Q3 2011	Q4 2011	Q1 2012	Q2 2012	Q3 2012	Q4 2012
Technical design													
Power crate modification testing													
FGC3 integration													
Prototype (electronic+power)													
Market Survey+call for tenders													
Production and reception testing													
Installation and commissioning													

- Technical design must be finished before the end of 2009, TL quads parameters have to be defined urgently.
- Final converter quantities are not needed before mid-2010

Conclusion

- With the latest LINAC4 EM Quad design, it is possible to power 1 or 2 magnets in series by limiting the di/dt during the ramp
- The PSB transfer line Quads and LINAC4 Quads will use the same power converter design
 - ➔ final converter design will be done when the PSB transfer line magnet design is well advanced
- Development and test of the Quadrupole Power Converter prototype will start early 2010, with series production in 2011
 - → final quantities are required before tendering in mid-2010