

Engineering changes and advances in the HL-LHC s.c. circuits [since the last Internal Circuit Review in March 2017]

Felix Rodriguez Mateos for the MCF

TCC – 2nd November 2017

Content

- 1) Background and global current status
- 2) Changes to the IT
- 3) Changes to the MS
- 4) Changes to the 11T dipole
- 5) Conclusions

Background

The last Internal Circuit Review that took place on the 17th of March 2017, turned out to be a really useful exercise that provided many recommendations and statements. Now, after months of common work together with the relevant work packages at the Magnet Circuit Forum (MCF) (since the review the MCF has hosted more than 10 regular meetings and **7** topical meeting), there have been changes applied with respect to the previous baseline. This presentation summarizes the status of advancements on the different circuits and the follow-up points from the Review.

Follow-ups after the review

Trim crowbar resistance is required to limit the currents to 250 A in case of power abort (it is proposed to take 250 A as nominal design value for the trim leads) WP6a, WP6b	Implemented Not adopted
	Not adopted
• Study the impact of the trim PC on the QDS in case of power abort on the 11T and neighbouring MB magnets in SM18, feasibility study WP11, WP7	
Test the full-length prototypes in order to elaborate a suitable quench detection strategy WP7, WP11	Work in progress
Qualify the present (conduction-cooled) current leads or make a new design WP6a	Work in progress
Decision on the qualification of the trim circuit in terms of HVWLs	Implemented
 The relevant groups (TE-MSC, TE-CRG) should launch a task force effort in order to agree on the requirements and the procedure for the dismantling and the reassembly of the DSL [In case of a dismantling of the DSL, the corrector SC cables WP6a should be kept at a rating of 600 A to include a possible change from MCBY correctors to MCBYY correctors] 	Work in progress
• Connection in series for four Q4 corrector magnets (2 circuits with two magnets each) be adopted in order to reduce the leads from 16 to 12 and hence eliminate the local powering WP6b, WP7	Implemented
Q5 correctors to be powered individually by providing local powering for the missing leads WP6a	Implemented
Only one between IQH and CLIQ is needed (the decision is to be taken after the test of the first long prototype) WP3	To be decided
Updates on the trim to be placed on Q1a WP2, WP3, WP6b, WP7	Well-advanced
Consequences of the upgrade the 2 kA and 120A sc trim cables in the sc link to a rating of about 5-6 kA and 5 MIITs WP6a	Implemented
Studies on cold diodes (development, tests up to 18 kA, radiation levels qualification, etc.) WP7, WP6b	Work in progress
Integration of cold diodes WP3	Work in progress
Studies to be carried out on the connection of D1 magnet to the inner triplet using both a three-cable configuration or a nested connection	Well-advanced
Design and integration of the bus-bars WP3	Work in progress
Design and integration of the cables and feedthroughs for CLIQ WP3	Work in progress
Design and implementation of interconnects and splices WP3, WP6a	Work in progress
Design and integration of the instrumentation WP3, WP7	Work in progress
An internal staffer to be designated to take full responsibility for the required studies including benchmarking WP7	Implemented
Follow-up on crowbars maximum voltage WP6b	Implemented
Follow-up on circuit separators	Work in progress

	Estimate classification	% of complete definition						
	Class 1	50 – 100						
	Class 2	30 – 70	Open Issues & C					
	Class 3	10 – 40						
	Class 4	Class 4 1-15 of Uncertain						
	Class 5	0 – 2						
Sectio	n	0	ipen issue	Class				
	Study on the IT alternative con	figurations from WP6a		1				
	Q1a k-modulation circuit follow	/-up		2				
	Bus-bars design			3				
	Circuit separators follow-up	Circuit separators follow-up						
	Design and integration of the c	Design and integration of the cables and feedthroughs for CLIQ						
IT	Study on the polarities for test	Study on the polarities for test campaigns						
	Study on the polarities of the c	Study on the polarities of the connection between quench heaters and CLIQ						
	Local integration of leads for co	Local integration of leads for corrector package						
	Cold diodes project as recomm	Cold diodes project as recommendation from the Internal Circuit review						
	Design and implementation of	Design and implementation of interconnects and splices						
	Design and integration of instru	Design and integration of instrumentation						
	Local integration of 120A leads	Local integration of 120A leads in the HL-LHC cryostats						
MS	Follow-up on the DSL	Follow-up on the DSL						
	Official statement regarding 11	T interlock strategy		1				
447	Test the full-length prototypes	in order to elaborate a suitable quench	detection strategy	3				
11T	Current leads for 11T trim			3				
	Study the impact of the trim PC	C on the QDS in case of power abort o	n the 11T and neighbouring MB magnets in SM18	4				

2) Changes to the IT

- a) Counter-check simulations on the IT. Simulations on Q1a k-modulation circuit
- b) Bus-bars
- c) Circuit separators
- d) Cold diodes project
- e) Document co-authored by WP6a and MCF
- f) Current leads for the IT correctors

2.a) Counter-check simulations on the IT. Simulations on Q1a k-modulation circuit

Conclusions from simulations & analysis in a nutshell

- For standard cases, over-currents can go up to 4.3 kA and 2.2 MIITs (approx. nominal and ultimate currents included) => <u>5 kA</u> current capability in s.c. would suffice for not quenching the conductors within the s.c. link
- For the very conservative scenario, those values could go up to 6.1 kA (nominal) and 6.8 kA (ultimate), and <u>5</u>
 <u>MIIts</u> (nominal and ultimate approx.), these numbers are obtained considering a full magnet suddenly quenching in its whole volume
- the analysis covers the whole spectrum of operating conditions, from low to ultimate current

Felix Rodriguez Mateos

time = 15 msGlobal magnet quench: ۰ **Detection + validation** time = 10 msGenerally **consistent results** compared

to previous TALES calculations (Some

evaluated under different scenarios (Reference cases

Assumptions

Maximum current, • ramp rate, and MIITS

provided by E Ravaioli)

Regular guench: **Detection + validation**

۰

starting assumptions)

October

2017

Highest values	Leads A / E	Leads B / D	Lead C	Lead F	Trim Q1	Trim Q3
Current [kA]	17.8	6.1	4.3	4.1	5.1	4.2
Ramp rate kA/s	250	170	100	70	160	160
MIITs	32.6	3.8	1.9	1.5	2.9	1.9

Counter-check simulations

Q1a k-modulation circuit simulations

Developed simulations on

- Current profile during magnet quench
- Current profile during power aborts (without quench)
- Required PC voltage
- Control performance during operation
- Copper cable section for cold powering

Summary of the simulations

- DC cable resistance (resistance during operation) value of less than 265 mOhm is optimal from a powering point of view (PC voltage and design)
- DC cable resistance + Crowbar resistance should be at least 230 mOhm to limit current looping above the DC design value of the circuit
- Overcurrent due to quench for the 'most conservative scenario' generate a hot spot temperature of 314 K.
- If integration accepted, it is fairly straightforward to define the parameters of the circuit (2x20mm2).
- Standard HL-LHC-60A-10V can be therefore used.

2.b) Bus-bars for the IT main circuit

Circuit with Cold Diode Option

More Detailed Schematic of the Circuits :

Under study: Insertion of a cold diode across Q1a k-modulation circuit

Samer Yammine for the MCF Meeting no. 24 - 2017-10-31

Options to protect bus-bars

Protection baseline: Any quench in any element \rightarrow Fire all the QHs/CLIQ systems When introducing the cold diodes, two possible strategies:

- 1. <u>One element quenches → All QHs/CLIQ systems will be fired</u>. Diodes carry only the over-currents (7 kA or less) for an equivalent time = 100 ms
- One element quenches → Selective QHs/CLIQ fired. Diodes carry 18 kA, time constant = 100 s

Possible advantage for option2: If a quench of the other magnets following the first cannot be completely avoided, these would happen at lower current, reducing the stress on the magnet and the heat introduced into the cryogenic system, which will allow a faster recovery.

Time of discharge of circuit with 50V RQX Crowbar = 350s.

Option 1 – Quench Protection Strategy

- Any busbar quenching \rightarrow Firing all protection systems
- Diodes carry only the over-currents (7 kA or less) for time constant or equivalent time = 100 ms

Option 2 – Quench Protection Strategy

Protection

strategy

- If any of IB, CB Q1/1 and CB Q1/2 quenches \rightarrow QPS of Q1 will be triggered
- If any of CB Q2a/1 and CB Q2a/2 quenches \rightarrow QPS of Q2a will be triggered
- If any of CB Q2b/1 and CB Q2b/2 quenches \rightarrow QPS of Q2b will be triggered
- If any of OB, CB Q3/1 and CB Q3/2 quenches \rightarrow QPS of Q3 will be triggered
- If any TB1, TB2 and TB3 quenches → QPS of the two adjacent magnets will be triggered
 Samer Yammine for the MCF Meeting no. 24 - 2017-10-31

Conclusions

Option 1: One element quenches \rightarrow All QPS systems will	Option 2: Selective quench strategy
be fired	Possible advantages of the selective quench protection:
Advantages to WP3:	• Triggering of the QHs/CLIQ of the other (not initially-
 Bus-bar integration in the cryostat is less complex 	quenching) magnets at a lower current (expected ca. 10%
 No need to size the trim bus bars to 18 kA (sc state and 	less from one magnet to the adjacent one)
quenching state	• It will allow more energy to be dissipated in the crowbar of the
 No need to integrate heat sinks for diodes 	RQX PC
Advantages to WP7:	Disadvantages:
 Keeps the QDS reliability like in the LHC's IT circuit 	• It includes complexity in the implementation of the QDS
• The triplet circuit in itself is the most complex HL-LHC	which leads to a less reliable system.
circuit. Option 1 does not add further complexity from the	• Due to the quench propagation, all the magnets could
QDS point of view.	eventually be fired (in the order of ten seconds between the
• The use of the LHC diodes if qualified for radiation levels.	quench of the different magnets)
Disadvantages:	• Diodes (+heat sinks) and bus-bars will be significantly bigger
When guench, no guick distinction between guench in coil	 Imposes new (non-LHC) diodes to support the current of 18

When quench, no quick distinction between quench in coil and bus-bars in terms of detection

Imposes new (non-LHC) diodes to support the current of 18 kA

After discussions, MCF considers option 1 as more adequate

2.c) Circuit Separators

Proposal for Separators for the IT Main Circuit

- Number of cabinets is preliminary and needs to be studied in details
- We can have short circuit positions on the three sub-circuits
- Circuit of Q1a not shown for simplification but can have the same principle
- Four separators in total (could be reduced to 3 [2x2 poles + 1x3poles] if short circuit position is not needed)

Proposal for Separators for D1/D2/OCs

- 13 kA or 2 kA OC separators
- 8 separators
- Can we integrate 2x2 kA separators per cabinet?
- 3 positions: connected, disconnected and short-circuit

DFLH close to PC \rightarrow distributed leads: Is this feasible?

2.d) Cold diodes project (Follow-up from internal circuit review)

Radiation

> 10¹⁴ cm⁻² 1 MeV neutron equivalent fluence at the envisaged location

shielding is (conceptually) not an option possible requalification by means of new irradiation tests Courtesy <u>F. Cerutti, R2E Cost</u> and Schedule Review, <u>12.10.2017</u>

- LHC type diffusion diodes tested (15 years ago) up to ~2 kGy and 3x10¹³ n cm⁻² (LHC project Report 688)
- Qualification required up to 30 kGy and 10¹⁵ n cm⁻²
 Felix Rodriguez Mateos

Qualification of cold diodes for HL-LHC triplet circuit

- Adapting the LHC type diffusion diodes for triplet currents and time constants (18 kA, ~100 s or 7 kA, ~100 ms)
- Qualification for HL-LHC radiation levels required

Staged approach:

- 1. Irradiation and in-situ testing in CHARM in 2018 to reproduce earlier results
- 2. Depending on results further testing in CHARM or other facility OR modification of diodes and re-testing

Experimental setup

Two stage Pulse Tube cryocooler

- Simultaneous operation at 77K (1st stage) and 4K (2nd stage)
- Temperature on both stage controlled via heaters
- metal seals, no electronics in cold head
- Cooling power of 1W@4K, ~90W@77K

Vacuum vessel

- Aluminium
- EPDM seals for radiation hardness
- Multi pin feed throughs
- Two stage interface for sample mounting
- Leak tightness for ~ 6 months
- Thermal shields + MLI

2.e) Document co-authored by WP6a and MCF

Felix Rodriguez Mateos

Document co-authored by WP6a and MCF - IT

This document summarizes the total number of High Temperature Superconducting (HTS) current leads and cables, the latter contained inside the Superconducting Link, needed for the powering of the HL-LHC Triplets and D1. The design current rating of both leads and cables is also indicated. The values reported in this document reflect the modifications introduced in the HL-LHC Cold Powering System in June 2017 in order to take into account the changes in the magnet circuits announced after the HL-LHC Magnets Circuits Internal Review (EDMS N. 1807471, May 2017). The components described in this document are part of the WP6a Cold Powering system.

Circuits simulations providing the input for transient modes, protection and high voltage insulation tests are part of the Magnet Circuit Forum activity. The input is used for the design of the Cold powering System.

Rating (kA)	MIITs (MA ^{2.} s)	dI/dt (kA/s)	τ _n (no quench of magnets) (s)	τ_{Q} (quench of magnets) (s)	Equivalent time (s)
18 (*)	32	250	130	0.2	0.1
7	5	250	130	0.2	0.12
2 (**)	1	20	20	0.5	-
0.2 (***)	0.02	0.25	21	0.8	-
0.12	0.02	0.22	5	0.8	-

Table 3: Characteristics of magnets'circuits during transient operations. All reported values (dl/dt, MIITs and time constants) are based on simulations [1] [2] and are conservative. For different circuits with the same current rating, the most conservative values are indicated. For D1 a quench load identical to that of the MQXF main circuit is adopted (*). A characteristic time of 0.5 s for MIITs calculation and 0.1 s for dl/dt (**) are assumed. An energy extraction resistance of 1.5 Ω is introduced in the MQXF quadrupole corrector circuit (***).

Rating (kA)	Worst case voltage to ground during operation (V)	Acceptance tests of components to ground (V)		Insulation test voltage of system to ground (V)		Leakage current per component (µA)	Test duration (s)
		RT	NOC	RT	NOC		
18	900	4600	2300	460	1080	≤10	30
7	900	4600	2300	460	1080	≤10	30
2	540	3160	1580	316	648	≤10	30
0.2	540	3160	1580	316	648	≤10	30
0.12	40	1160	580	220	360	≤10	30
0.035	900	4600	2300	460	1080	≤10	30

Table 4: Test voltage of leads and cables and calculated highest voltage to ground during operation. For the 18 kA and 7 kA cables, the highest voltage is estimated to be 700 V (across the high resistance of Q1a trim) + 100 V (sum of voltages across crowbar and cables resistances) + 100 V (superconducting cable in the link resistive along the full length). For the 2 kA and 0.2 kA cables, an energy extraction of 500 V is considered (worst case scenario). For the 0.12 kA circuits-the crowbar voltage across the power converter is taken into account for the calculations.

2.f) HL-LHC IT correctors (120A-200A) current leads integration

Felix Rodriguez Mateos

3) Changes to the MS

Status

• Q4 and Q5 correctors will be powered individually

- Upon a request by WP6b (transmitted to the MCF), WP6a has accepted to provide enough leads to feed <u>individually the corrector MCBY magnets</u> <u>of Q4 and Q5</u>. This means that 1 set of local four-lead assembly will be integrated in the Q4 cold mass and 3 sets in the cold mass of Q5. This will mitigate the development of a new family of power converters to deal with the high energy and the inductance of two MCBYs in series.
- The decision on the necessity of <u>dismantling the DSL during LS3 should</u> <u>be taken by the end of 2017</u>. By then, a roadmap on the strategy will be proposed to MCF and TCC.

Document co-authored by WP6a and MCF -

<u> </u>									
Magnet		Current	Feedbox	Lead	N _{TOT}	SC Link	N _{TOT} cables		
		(A)	Туре	Туре	leads	Туре	in the SC link		
MQY	Q4 Quadrupole	6000	*DFBL	HTS*	3	*DSL	3*		
	Q4 Correctors	120	*DFBL	Resistive*	12	DSL	12*		
МСВА		120	-	Local**	4	-	-		
MQY	Q5 Quadrupole	6000	*DFBL	HTS*	3	*DSL	3*		
MCBY	Q5 Correctors	120	-	Local**	12	-	-		
MQML	Q6 Quadrupole	6000	*DFBL	HTS*	3	*DSL	3*		
MCBC	Q6 Correctors	120	-	Local**	4	-	-		
MCBRD	D2 Correctors	600	DFHM	HTS***	8	DSH	8***		
MBRD	D2 Recombination Dipole	13000	DFHM	HTS***	2	DSH	2***		

Circuit Rating (A)	Rating (A) Worst case V		Acceptance		Installation		Time (s)	
	Circuit	to Gnd (V)	RT	NOC	RT	NOC	Current (µA)	nime (s)
D2	13000	110	1440	720	335	705	10	30
D2 Corr.	600	660	3640	1820	364	792	10	30
Q4	6000	110	1440	720	150	150	15	30
Q4 Corr.*	120	160	1640	820	300	600	3	30
Q4 Corr.**	120	60	1240	620	300	600	3	30
Q5	6000	110	1440	720	150	150	15	30
Q5 Corr.	120	60	1240	620	300	600	3	30
Q6	6000	110	1440	720	260	480	15	30
Q6 Corr.	120	60	1240	620	300	600	3	30

30

4) Advancements on the 11T dipole

- a) 11T interlock system
- b) 11T current leads
- c) 11T dipole powering and protection document

4.a) 11T dipole interlock system

Felix Rodriguez Mateos

Proposed implementation of 11T trim

- Hardware connection to the PIC main dipole quench loop
- Separate the 11T trim and the RB circuit → easier diagnostics in case of trip
- SPA request could be implemented via the PIC, if required, as a function of the main RB circuit status → requires change of safety critical code

33

4.b) 11T dipole trim current leads

11T dipole trim current leads

WP6a has confirmed that they will "re-use" the LHC 120 A conduction-cooled leads

WP6a presented that they have already launched:

- Proposal of powering one polarity via two leads (to make feasible-flexiblethe conduction-cooled option);
- Discussion with TE-EPC for protection of leads against over-heating and possibility of identifying non homogenous current distribution;
- Initiative to re-make an integration study with the objective of keeping as much as possible the existing LHC solution;
- Integration work carried out by R. Betemps (in interface with SCD and CMI). Found solution for keeping the same length of each lead, i.e. same design of leads and thermalization blocks, but different shape. Responsibility under MSC-SCD.

Current leads actual design

120 A LHC currents leads

- 1 bloc => 2 circuit with 120 A (4 leads)
- Reserve parts existing.

<u>Status</u>

- ~ Same parts as LHC 120A current lead.
- Change the flange position.
- Add a slit on the thermal screen.

Next steps

- Final design.
- New bending Tools.

See Amalia's presentation today

36

4.c) 11T dipole powering and protection document

11T dipole powering and protection

This report describes the powering and protection of the 11T dipole circuit. The **different elements of the circuit** are described and **simulations** for currents and quench behaviour are shown. **Measurements** done on the 11T magnet are also reported. The magnet protection aspects are discussed, as well as, hints to the hardware requirements. **Case studies of normal and failure scenarios** linked to the magnet circuit are analysed.

EDMS no: 1764166 (Link)

Authors: S. Izquierdo, G. Willering, S. Yammine, R. Denz, F. Menendez, A. Antoine, I. Romera, D Wollman and Jens Steckert

	HL-LHC PROJEC		EDI 17	MS NO. 64166	REV. 0.1	VALIDITY DRAFT
. 7			REFE	RENCE :		
		REPOR	RT			
		11 TESLA D	DIPOLE			
1	1T DIPOLE		RING AND	PROT	ECTIO	N
Abstract						
magnet are als	so reported. The	magnet protection aspects	s are discussed,	as well a	as, hints to	the hardware ed
equirements.	case studies of no	nna and failure scenarios i	iinked to the mag	net circu	it are analys	
requirements.	Un	der vei	rifica		it are analys	
requirements.	Un	der vei proce	rifica ess		it are analys	
requirements.	Un	der vei proce	rifica ess) D	
requirements. t	Un	der vei proce	rifica ess			
Pequirements.	Un Li Iquierdo Bermu toine, I. Romera Ri	der vei proce rracealli der, G. Willering, S. Yammir mirre, D. Willering, S. Yammir	rifica ess uny ne, R. Denz, F. Me tecker	enendez	Date: 20:	17-03-16
Prepared by: S 2mara, A. Ant Verified by: H.	Liquierdo Bermu toine, J. Romera Ri Bajas, R. Garcia A Ferveij and G. Will	der vei proce traceable dez, G. Willering, S. Yammir amirez, D. Wollman and J.St ering.	rifica ess uny ne, R. Denz, F. Me tecker teos, H. Thiesen,	atic enendez Jan	Date: 20:	17-03-16 YY-MM-DD
Prepared by: S Zamara, A. Ant Verified by: H. Jythoven, A. V. Approved by: R. J. Wollman	Laquierdo Bermu Laquierdo Bermu Bajas, R. Garcia A ferweij and G. Will M. Bajko, I. Bejar A	der vei proce proce <i>TRACEABI</i> dez, G. Willering, S. Yammir mirez, D. Wollman and J.St si, H. Prin, F. Rodriguez Ma ering.	LITY R. R. Denz, F. Me tecker tecs, H. Thiesen, M. Pojer, F. Sava	enendez Jan	Dote: 201 Dote: 201 Dote: 201	17-03-16 Yr-MM-DD
Prepared by: S Zamara, A. Ant Zamara, A. Ant Verified by: H. Jythoven, A. V. Approved by: N. J. Wollman Distribution: N	Li Iquierdo Bermu Li Iquierdo Bermu toine, I. Romera Ri Bajas, R. Garcia A ferweij and G. Will M. Bajko, I. Bejar A J. Surname (DEP/G	der vei proce proce <i>TRACEABI</i> dez, G. Willering, S. Yammi mirez, D. Wollman and J.St and J.S	LITY Ress LITY LITY Here, R. Denz, F. Me tecker teos, H. Thiesen, , M. Pojer, F. Sava can also include ro	inendez Jan ry and	Date: 201 Date: 201 Date: 201	17-03-16 Y-MM-DD Y2-MM-DD Res
Prepared by: S Zamara, A. Ant Zamara, A. Ant Verified by: H. Jythoven, A. V. Approved by: N. J. Wollman Distribution: N Rev. No.	Li Iquierdo Bermu Li Iquierdo Bermu toine, I. Romera Ri Bajas, R. Garcia A ferweij and G. Will M. Bajko, I. Bejar A J. Surname (DEP/G Dote	der vei proce proce mirez, D. Wollman and J.St and J.St a	LITY R. R. Denz, F. Me tecker teos, H. Thiesen, M. Pojer, F. Sava can also include ro es (major changes	inendez Jan eference s only, mit	Date: 201 Date: 201 Date: 201 Date: 201 to committe	17-03-16 Y-MM-DD YY-MM-DD res is in EDMS)

38

5) Conclusions

Conclusions

 Great effort carried out with the different work packages

- A great deal of advancements to optimize the circuits
- Recommendations from the review taken into account
- Draft ECR on the modifications
- Good status with respect to the open issues

HL – LHC Engineering Change Request New reference circuit baseline							
	ECR DESC	CRIPTION					
WP Originator	MCF	Process	Process concerned				
Equipment	HL-LHC magnet circuits	Baseline affected	Scope, Schedule, Cost				
Drawing		Date of Issue	201Y-MM-DD				
Document		Cl responsible	N. Surname				
WPs Affected	WP1, WP2, WP3, WP6a, WP6b, WP7, WP9, WP10, WP11, WP12, WP15, WP16, WP17	Reference Document	TDR Version X.X				

Detailed Description

After the Internal Circuit Review that took place the las 17th of March 2017, the High luminosity LHC (HL-LHC) magnet circuits requires considerable upgrades or/and modifications. These changes will be presented through this section and they will be divided in 3 different main topics: 11 Tesla Dipole Circuit, Matching Section Circuits and Inner Triplet Main Circuit.

a) 11 Tesla Dipole Circuit

Before the Internal Circuit Review, the need of the trim circuit was not clear. Nevertheless, it was stated that the trim circuit will be kept in the baseline in order to reduce the load on the correctors and to add a degree of redundancy on the circuit. Moreover, it was confirmed that the trim crowbar resistance is required to limit the current to 250 A in case of a power abort (I tis proposed to take 250A as nominal design value for the trim leads). It has been confirmed by WP6b that the trim PC will be designed to withstand 1.2kV (full energy extraction voltage at ultimate + 20% margin), hence, the PC cannot withstand ELQA voltage levels (2.1 kV).

After the review the 117 PIC strategy have been established. The PIC quench loop of the trim circuit will be linked via a hardware connection (to be developed) to the PIC quench loop of the main dipole circuit in of the odd iP side. This scheme eases the diagnostic in case of a spourious trip in the 117 dipole or main dipole circuit and at the same time ensures a hardware connection to the quench loop of the main dipole circuit. An addition SPA request to the trim circuit as a function of the status of the R8 circuit could be implemented in the future via the PIC, if required.

WP6a has confirmed that they will "re-use" the LHC 120 A conduction-cooled leads.

b) Matching Section Circuits

Q4 and Q5 correctors will be powered individually, which means that one feedthrough with four leads will be integrated in the Q4 cold mass and 3 feedthroughs in the cold mass of Q5. This will mitigate the development of a new family of power converters to deal with the high energy and the inductance of two MCBYs in series.

A fairly realistic timeline for the decision on the necessity of dismantling the DSL during LS3 would be by the end of 2017. By then, a roadmap on the strategy should be proposed to TCC and the MCF.

The values of the test voltages for leads and cables and calculated highest voltage to ground during operation for the Matching section, have been calculated:

Template EDMS No.: 1508429

Thanks for your attention

Spare slides

Circuits Layout

43

Inner triplet circuit

44

Correctors for the IT main circuit

Orbit correctors

- 6 Circuits per IP side
- Power converters (located at UR):
 - 6 x 2 kA (4quad)
- Cold powering (feedbox: DFHX at UR):
 - 12 x 2 kA leads
- Quench protection:
 - Quench heaters (baseline)

± 2 kA

DFHX

• EE system (option)

DFHX

High order superferric correctors

9 Circuits per IP side Power converters (located at UR): 1 x 0.6 kA limited to 0.2 kA (4quad) 8 x 0.12 kA (4quad) Cold powering (feedbox: DFHX at UR): SF HO 2 x 0.2 kA leads /IOSXF (200A) 16 x 0.12 kA leads MCSXF/MCSSXF (2x120A) MCOXF/MCOSXF (2x120A) MCDXF/MCDSXF (2x120A) Quench protection: x1 MCTXF/MCTSXF (2x120A) ¥8 PC Crowbar DFHX EE system QP: PC Crowba (dump resistor DFHX DFHX 1.5 Ohms) for Quadrupole ± 120 A Proposal Corrector Package (CP) – Locally powered for 120 and 200 A circuits

Quadrupoles Q4, Q5 and Q6

Quadrupole Q4

- 1 Circuits per IP side
- Power converters (located at RR):
 - 2 x 6 kA (1quad)
- Cold powering (feedbox: DFBL at RR):
 - 3 x 6 kA leads
- Quench protection:
 - Quench heaters

Quadrupoles Q5 and Q6

- 2 Circuits per IP side
- Power converters (located at RR):
 - 2 x 6 kA (1quad)
- Cold powering (feedbox: DFBL at RR):
 - 6 x 6 kA (1quad)
- Quench protection:
 - Quench heaters

46

Q4, Q5 and Q6 correctors

Q4 correctors

- 8 Circuits per IP side
- Power converters (located at RR):
 - 8 x 0.12 kA (4quad)

• Cold powering:

- 12 x 0.12 kA leads via DFBL
- 4 x 0.12 kA leads in local powering
- Quench protection:
 - PC crowbar

Q5 correctors

- 6 Circuits per IP side
- Power converters (located at RR):
 - 6 x 0.12 kA (4quad)
- Cold powering:
 - 12 x 0.12 kA leads in local powering
- Quench protection:
 - PC crowbar

Q6 correctors

- 2 Circuits per IP side
- Power converters (located at RR):
 - 2 x 0.12 kA (4quad)
- Cold powering:
 - 4 x 0.12 kA leads in local powering
- Quench protection:
 - PC crowbar

47

Layout Right of Point 5

Q4, Q5 and Q6 correctors

HL-LHC

- Local powering for supplementary Q4 correctors
- Local Powering of Q5 correctors
- Q6 as LHC configuration

Dipoles D1, D2 and D2 correctors

Dipole D1

- 1 Circuits per IP side
- Power converters (located at UR):
 - 1 x 13 kÅ (1quad)
- Cold powering (feedbox: DFBL at UR): :
 - 2x 13 kA leads
- Quench protection:

DFHX

Quench heaters

13 kA

DFHX

Dipole D2

- 1 Circuits per IP side
- Power converters (located at UR):
 - 1 x 13 kA (1quad)
- Cold powering (feedbox: DFHM at UR):
 - 2x 13 kA leads
- Quench protection:

DFHM

Quench heaters

13 kA

DFHM

D2 correctors

- 4 Circuits per IP side
- Power converters (located at UR):
 - 4 x 0.6 kA (4quad)
- Cold powering (feedbox: DFHM at UR):
 - 8 x 0.6 kA leads
- Quench protection:
 - PC crowbar

11T dipole

- Power converters (located in the RR):
 - 1 x 250 kA (4quad)
- Cold Powering (local 2 leads per polarity as tentative):
 - Current leads: LHC DCFs as tentative
- Quench protection:
 - Quench heaters
 - EE from RB circuit

3.e) Quantitative studies on alternative solutions (WP6b and WP7)

- Three-cable configuration
- Four-layer nested configuration

Scheme of the three-cable configuration

WP6b

Advantages	Disadvantages					
	1. Electrical common point for two different circuits					
	2. Additional complexity in searching for earth faults					
No clear advantages for WP6b (Transparent	3. Longer estimated MTTR time for TE-EPC (12 hours + 50 %)					
to control, same number of power	4. Electrical issue on D1 circuit impacts IT circuit and vice et versa					
converters, etc.).	 Four cables connection on the current leads (or circuit separator) (2 for 18 kA – 1 for 13 kA and 1 for 2 kA) 					

1.

	Advantages	Disadvantages				
	1.	ELQA to be performed all together (incl. higher voltage withstand requirements of triplet on D1,)				
1.	1x 18 kA lead less	2.	Quench cross talk between triplet and D1			
		3.	PC regulation more complicated			
		4.	4th cable at warm			
2.	2. 1x spare lead /	5.	Commissioning more complicated			
link	6.	More simulations required to study failure cases etc. $(\rightarrow \text{ manpower})$				
			Folix Dodriguoz Motoco	f		

Scheme of the three-cable configuration

1.