TCSPM Beam Tests at the LHC and Ideas for IR7 Low-Impedance Upgrade for LS2

A. Mereghetti, on behalf of the LHC Collimation Team

Many thanks to all teams involved in the work, especially to the LHC impedance team.
Outlook

- Introduction
- TCSPM Measurements at the LHC
- Ideas for IR7 Low-Impedance Upgrade for LS2
- Conclusions
• Introduction
• TCSPM Measurements at the LHC
• Ideas for IR7 Low-Impedance Upgrade for LS2
• Conclusions
Introduction

- IR7 collimators account for a significant fraction of the LHC impedance budget, which has impact on beam stability;
 - IR7 is the location in the LHC with the largest fraction of LHC collimators;
 - The vast majority with jaws in graphite: TCPs and TCSGs;
 - Contribution of IR7 carbon collimators to LHC impedance budget enhanced by small gaps and large number of collimators in the same family;

- With respect to Nominal LHC parameters, HL-LHC foresees to double the bunch population and to reduce the normalized emittance;
 - Increased impact of collimators on impedance;
 - Increased load on collimators for the same beam lifetime!

- Extensive R&D program allowed to converge on:
 - MoGr as jaw material – to enhance robustness and improve impedance;
 - Mo as coating material of TCSGs – to further improve the picture in terms of impedance;

- Baseline upgrade of the LHC collimation system in view of HL-LHC:
 - Consolidation of present system (post-LS2 era):
 - Exchange 2 TCPs (H+V) with TCPMs (60cm, MoGr);
 - Exchange of 4 TCSGs with TCSPMs (1m, MoGr, Mo-coated);
 - Full HL-LHC upgrade (post-LS3 era):
 - Exchange the remaining 7 TCSGs with TCSPMs (1m, MoGr, Mo-coated);

Necessity to validate design with beam!

Actual slots not finalized yet!
• Introduction
• TCSPM Measurements at the LHC
• Ideas for IR7 Low-Impedance Upgrade for LS2
• Conclusions
TCSPM Prototype

- The finalization of the TCSPM design required to verify with beam the beneficial effects of the material choice;
- During YETS 2016, a prototype of TCSPM was installed (LHC-TC-EC-0006) in slot D4R7.B2 for tests with beam:
 - Vertical secondary collimator;
 - Position characterized by the smallest beam σ among the secondary collimators \rightarrow ideal for impedance measurements;
 - In that same slot a regular TCSG is already present;
 - Three coating layers, to quantify beneficial effects onto impedance with respect to traditional TCSGs;
- During 2017, extensive MD campaign of tune-shift measurements in order to benchmark expectations (impedance model);
MD2193 (TCSPM): Single Stripe Impedance

- **Aim:** measure the **impedance** contribution from each TCSPM stripe and compare results against the TCSG nearby;
- **Impedance:**
 - Real part \rightarrow instability threshold (octupole currents);
 - Imaginary part \rightarrow tune-shift;
- **Depending on the collimator material and gap a different tune-shift is induced:**
 - Measurements carried out **cycling the collimator gap** and monitoring the tune signal;
 - Tune measured kicking the whole bunch and monitoring the damped oscillations;

Measurements with the highest sensitivity

![Graph showing TCSPM stripe position and Tune Q_y.](image)

<table>
<thead>
<tr>
<th>TCSPM stripe position</th>
<th>Mo</th>
<th>MoGr</th>
<th>TiN</th>
</tr>
</thead>
</table>

Courtesy of D. Amorim
MD2193 (TCSPM): Single Stripe Impedance (II)

Good agreement between measurements and expectations (ImpedanceWake2D, resistive wall + geometrical impedances);

Though measurements with Mo constantly x2 expectations
MD2191 (TCSPM): Impedance with HL-LHC-type Bunches

Same measurements as before, repeated with an HL-LHC-type bunch (~1.9×10^{11});

...measurements with Mo still constantly x2 expectations

...roughness of coating (5 µm) translates into a non-uniform / different thickness of Mo, with effects on impedance → ongoing studies (G. Mazzacano, ABP-HSC)

17th – 18th Sep 2017
• Introduction
• TCSPM Measurements at the LHC
• Ideas for IR7 Low-Impedance Upgrade for LS2
• Conclusions
Consolidation of the LHC Collimation System in IR7 – post-LS2 Era

- As part of the consolidation of the LHC collimation system in IR7, it is foreseen to exchange:
 - 2 TCPs (H/V) in graphite (60cm) with TCPMs in MoGr (60cm);
 - 4 TCSGs in graphite (1m) with TCSPMs in MoGr (1m), Mo-coated;
 - Slots of the 4 TCSGs not finalized yet;

4 possible configurations proposed:
1. Reduce impedance as much as possible;
2. Avoid first two skew collimators (most exposed to steady-state losses);
3. Avoid H and V secondary collimators, for protection reason;
4. Avoid H secondary collimators only (ABD);

Finalization of choice could take advantage of more detailed estimations of impact on impedance and load on coating;
Impedance Considerations

Mo coating on IR7 TCSGs: machine impedance and octupole threshold reduced by ~ 30% if all TCSGs are exchanged;
→ 50% of the expected impedance reduction can be achieved exchanging only 4 collimators → LS2.2 offers the largest decrease

![Graph showing impedance reduction]
Load on Coating Layer

- Load on coating layer “roughly” estimated with tracking studies performed with the Fluka-SixTrack coupling:
 - Endep scored in a regular USRBIN mesh of Fluka, but transport thresholds cut EM part (including δ-rays from ionisation) and kills all hadrons but protons >1TeV;
 - HLLHCv1p3 – 2 optics considered:
 - β*=15cm, no TCLD;
 - EoS, without MQWA.5[L,R]7 (courtesy of R.Bruce);

<table>
<thead>
<tr>
<th>IR</th>
<th>Coll Family</th>
<th>Settings@15cm [σ]</th>
<th>Settings@FT [σ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR7</td>
<td>TCP / TCSG / TCLA / TCLD</td>
<td>5.7 / 7.7 / 10.7 / out</td>
<td>5.7 / 7.7 / 10.7 / 14</td>
</tr>
<tr>
<td>IR3</td>
<td>TCP / TCSG / TCLA</td>
<td>15 / 18 / 20</td>
<td>15 / 18 / 20</td>
</tr>
<tr>
<td>IR6</td>
<td>TCDQ / TCSP</td>
<td>8.5 / 8.5</td>
<td>10.4 / 10.4</td>
</tr>
<tr>
<td>IR1/5</td>
<td>TCT / TCL</td>
<td>8.8 / 12</td>
<td>37 / out</td>
</tr>
<tr>
<td>IR2</td>
<td>TCT</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>IR8</td>
<td>TCT</td>
<td>15</td>
<td>37</td>
</tr>
</tbody>
</table>
Endep in Coating Layer (II)

TCSPM Fluka model originally by E. Skordis; → Improved to take into account the coating layer

Scoring mesh: 5μm x 400μm x 5cm

Development of cascades interrupted; → Showering from upstream collimators NOT taken into account;

Pre-processing script for automatic generation of Fluka geometry for coupled simulations upgraded to fully exploit LB capabilities (including per-collimator scorings)
Endep in Coating Layer (III)

First three skew collimators most impacted in post-LS2 era!

V plane more affected than H plane!!
B1H Loss Maps – $\beta^*=15\text{cm} – \text{IR7}$
Outlook

- Introduction
- TCSPM Measurements at the LHC
- Ideas for IR7 Low-Impedance Upgrade for LS2
- Conclusions
Conclusions

• Installation of TCSPM prototype in slot D4R7 during YETS 2016:
 • Played a key role in verifying with beam predictions of effects on impedance from the IR7 collimator upgrade for HL-LHC;
 • Three coating stripes (Mo, MoGr and TiN): important to prove Mo coating as best option impedance-wise, though measurements do not show a performance as good as predicted;
 • Verifications on effects from thickness of coating layer on-going;

• Consolidation of IR7 collimation system:
 • Planned to exchange:
 • 2 TCP (H/V) collimators (60cm, carbon) with TCPMs (60cm, MoGr, un-coated);
 • 4 TCSG collimators (1m, carbon) with TCSPMs (1m, MoGr, Mo-coated) → slots not yet finalized;
Finalization of Choice of TCSPM Slots (for discussion)

- **Option #2:**
 - Impedance-wise, the best one in terms of benefits;
 - Does not spare H/V TCSs;
 - Lowest effects on peak endep in coating layer;
- **Option #4:**
 - Impedance-wise, one of the worst ones;
 - It spares H TCSs (ABD);
 - Highest effects on peak endep in coating layer → could we use this configuration for a test with beam?
- **Option #3:**
 - Impedance-wise, the worst one;
 - Fully spares H/V TCSs;
 - High effects on peak endep in coating layer;
- **Option #1:**
 - Impedance-wise, not bad;
 - Does not spare H/V TCSs;
 - High effects on peak endep in coating layer;
Possible Follow-Up with Simulations

- Accurate Fluka calculations of endep in coating layer;
- Explore configurations with 1σ-retraction;
- Characterize B2;
Spare Slides
Endep in Coating Layer

\[\beta^* = 15 \text{cm} \]
B1H Loss Maps – $\beta^* = 15\text{cm} – \text{LHC}$
B1H Loss Maps – $\beta^*=15\text{cm}$ – IR7 DS
B1V Loss Maps – $\beta^*=15\text{cm}$ – LHC
B1V Loss Maps – $\beta^*=15\text{cm} – \text{IR7}$

- **B1V, none**
 - $\eta [\text{m}^{-1}]$
 - 5.33×10^6
 - 4.01×10^6

- **B1V, config1**
 - $\eta [\text{m}^{-1}]$
 - 5.12×10^6
 - 4.00×10^6

- **B1V, config2**
 - $\eta [\text{m}^{-1}]$
 - 5.17×10^6
 - 3.91×10^6

- **B1V, all**
 - $\eta [\text{m}^{-1}]$
 - 5.34×10^6
 - 3.85×10^6

- **B1V, config3**
 - $\eta [\text{m}^{-1}]$
 - 5.32×10^6
 - 3.92×10^6

- **B1V, config4**
 - $\eta [\text{m}^{-1}]$
 - 5.07×10^6
 - 3.96×10^6
B1V Loss Maps – $\beta^*=15\text{cm}$ – IR7 DS
B1H Loss Maps – FT – LHC
B1H Loss Maps – FT – IR7
B1H Loss Maps – FT – IR7 DS

B1H, none

$\eta [m^2]$

B1H, config1

$\eta [m^2]$

B1H, config2

$\eta [m^2]$

B1H, all

$\eta [m^2]$

B1H, config3

$\eta [m^2]$

B1H, config4

$\eta [m^2]$
B1V Loss Maps – FT – LHC

B1V, none

B1V, config1

B1V, config2

B1V, all

B1V, config3

B1V, config4
B1V Loss Maps – FT – IR7
B1V Loss Maps – FT – IR7 DS