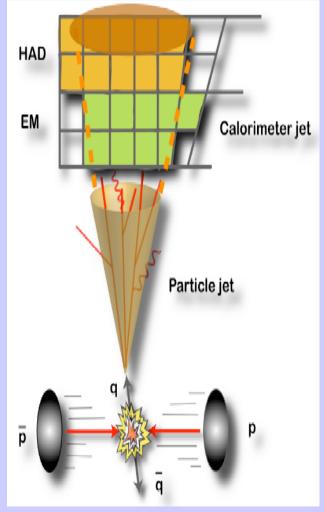
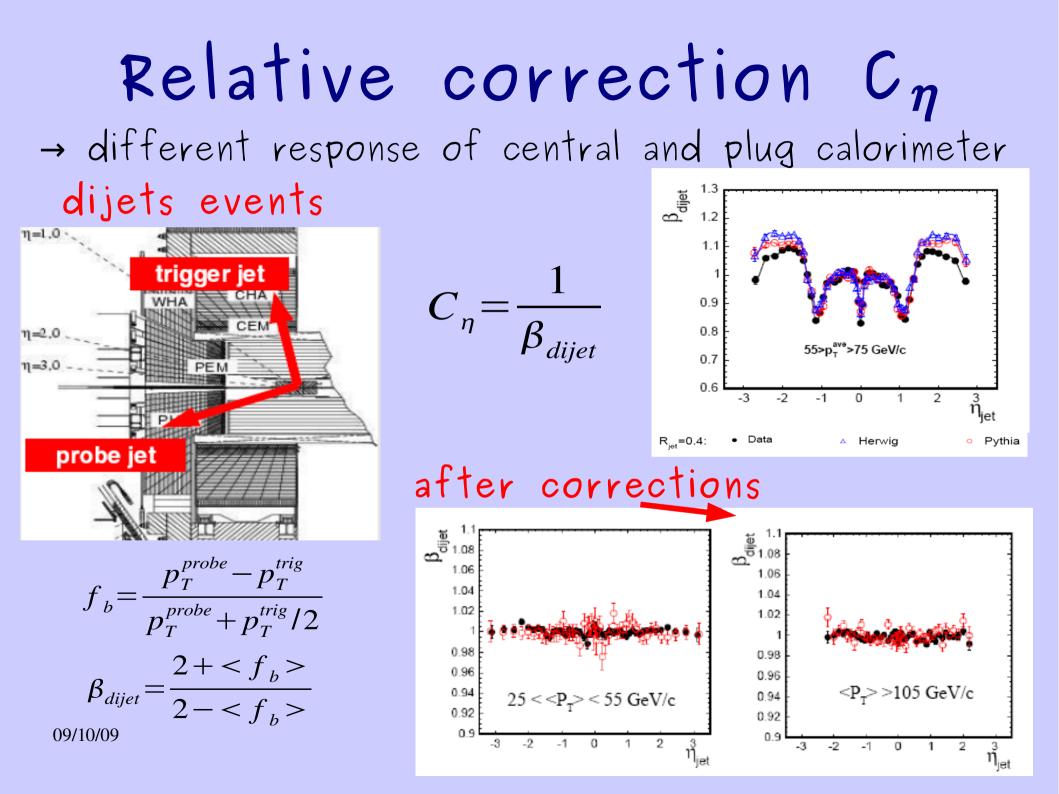
Jet Energy Scale and Top quark charge at CDF

Pavol Bartoš, Stanislav Tokár

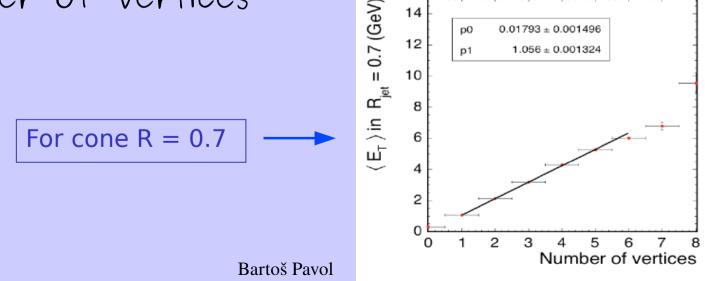
CZ – SK Collider Physic Workshop

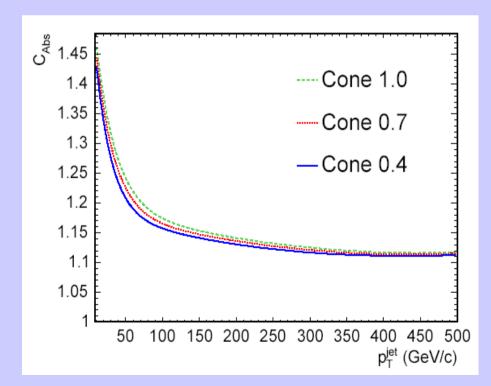

Jet energy scale (JES) motivation


- Jets are observed as clustered energy deposition in calorimeters
- Measured energy is corrected due to many efects (see next slide)
- JES play role in systematic errors
 (for top mass is dominant syst.err)

JES method

$$p_{T}^{parton} = (p_{T}^{jet} \times C_{\eta} - C_{MI}) \times C_{Abs} - C_{UE} + C_{OOC} = p_{T}^{particle} - C_{UE} + C_{OOC}$$

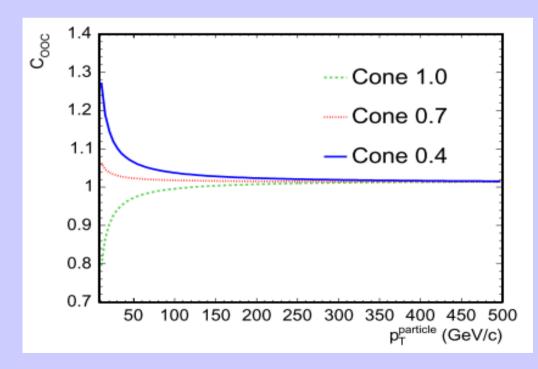

- C_{η} relative correction
- CMI multiple interaction corr.
- CAbs absolute corr.
- CUE underlying events corr.
- Cooc out of cone corr.


Multiple interaction cor. CMI

- → Number of extra interaction per one bunch crossing depends on luminosity
- \rightarrow For Tevatron L=2.10³² cm⁻²s⁻¹; (N)=6
- \rightarrow energy in jets increase with extra interaction
- → linear correlation between number of interaction and number of vertices and and between a number of vertices

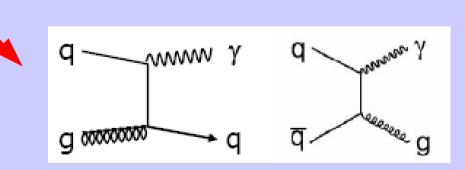
Absolute correction CAbs

- → After this correction, jets are independent from detector
- \rightarrow depends on multiplicity and pT spectrum of particles in jet

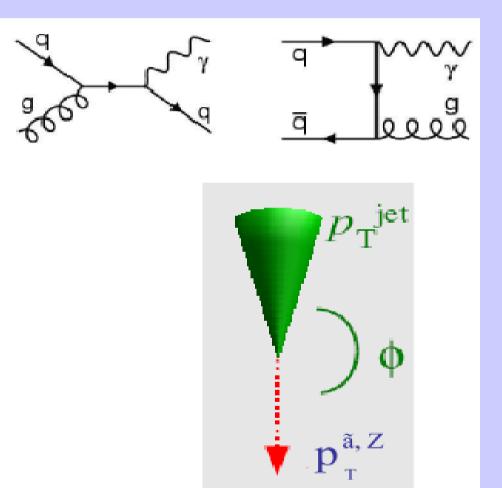

Underlying events

 \rightarrow particles from initial state radiation ISR

 → particles from spectator partons with color connection to the other parton from proton ("beam-beam remnant)


Out of cone correction

- \rightarrow fraction of energy lost from jet cone due to the final state gluon radiation FSR
- \rightarrow particle exiting the cone in fragmentation process
- → low pT particles bending in magnetic field


Validation of JES

- \rightarrow Z jets events
- → dijets events
- \rightarrow W \rightarrow jj in ttbar events
- $\rightarrow \gamma$ jets events

Validation of JES: γ - jets events

- Pho_25_tight trigger
- Photon with: $p_T^{\gamma} > 27 \text{ GeV}$ $|\eta^{\gamma}| < 0.9$
- One vertex
- $\Delta \varphi(\gamma, jet) > 3$
- 2nd jet $p_T^{jet 2} < 3 \text{ GeV}$

Validation of JES: γ - jets events

 p_{T} balance after all corrections

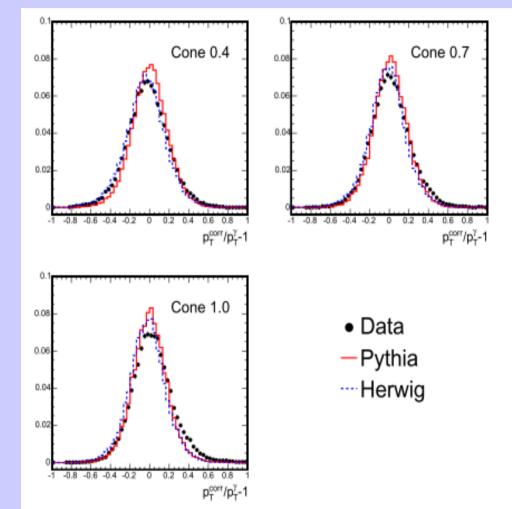
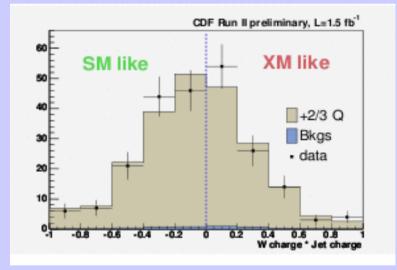


Figure 36: γ -jet balance in data, PYTHIA and HERWIG using $R_{jet}=0.4$, 0.7 and 1.0 after η -dependent, absolute and OOC+UE corrections.

Agreement Data/MC within 3%

Top quark charge at CDF


Top quark charge at CDF \rightarrow Charge of W boson = lepton charge - in hadronic branch Q(W) = -Q(I) \rightarrow b-jet charge algorithm: - weighting technique: $\sum q_i (\hat{n} \cdot \vec{p}_i)^w$ $JetQ = \frac{i}{\sum (\hat{n} \cdot \vec{p}_i)^w}$ *n*: os jetu $N_{tracks} > 1$ $\vec{p}_i: p_T treku (> 1.5 GeV)$ w = 0.5, jet cone 0.4 (after optimalization)

Top quark charge at CDF
• W boson and b-jet pairing

$$\chi^{2} = \sum_{i=l, \, 4jets} \frac{(\hat{P}_{T}^{i} - P_{T}^{i})^{2}}{\sigma_{i}^{2}} + \sum_{j=x, y} \frac{(\hat{P}_{j}^{UE} - P_{j}^{UE})^{2}}{\sigma_{j}^{2}} + \frac{(M_{jj} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{lv} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{lv} - M_{w})^{2}}{\Gamma_{w}^{2}} + \frac{(M_{blv} - M_{t})^{2}}{\Gamma_{v}^{2}} +$$

In fitter we constrain top quark mass to 175 GeV b-jet - lepton pairing => 24 combinations using combination with minimum χ^2 after optimization => χ^2 cut: $\chi^2_{min} < 9$ Description and the second Top quark charge at CDF • Latest results using this method L=1.5 fb⁻¹:

→ exotic model is exluded with 87% CL

Yield	Observed	After pairing	JQ defined	\mathbf{SM}	XM
L + J	193	102	199 pairs	111	88
DIL	44	14	26 pairs	13	13
Total	237	116	225 pairs	124	101

- Come out with results for L=1.9 fb⁻¹
- Increase statistics to L=4.2 fb-1

Plans in top quark charge

- → We are using tight leptons:
 - TCEM isolated central electron
 - TCMUP isolated central muon with stubs in both CMU and CMP muon detectors
 - TCMX isolated central muon with stub in CMX muon detector and pass COT exit radius cut
- → Add so called Loose Muons (see next slide) to increase statistic

Plans in top quark charge

→ Loose Muons (diff. trigger as for tight lep.):

 TCMXNT - no isolated non-triggable muon with a stub in the CMX detector, no COT exit radius cut

• TCMU - isolated central muon with stub only in CMU

• TCMUNI - non-isolated central muon, stub only in CMU

- TCMP isolated central muon with stub only in CMP
- TCMPNI non-isolated central muon, stub only in CMP
- TCMIO stubless muon, pass another cuts for muons
- TSCMIO as TCMIO, but with stub in one of the muon detectors (CMU, CMP, CMX, BMU)

Thank you!

Back up

Top charge: Events selection

- \rightarrow Lepton p_{T} > 20 GeV, lepton isolation < 0.1
- → MET > 20 GeV (neutrino)
- → at least 3 tight jets (p_T > 20 GeV & $|\eta| < 2$) and one loose jet (p_T > 12 GeV & $|\eta| < 2.4$)

$$\rightarrow$$
 at least 2 b-tagged jets