

Heidelberg University

Carl Zeiss Foundation

Tau Polarimetry in B decays

Susanne Westhoff

Heavy Quarks through the Looking Glass — Oct 4-5, 2018 — University of Siegen

SEMILEPTONIC B DECAYS IN 2007

Decays to taus are starting to be explored: $B \rightarrow \tau \nu$.

REACHING PRECISION IN B DECAYS TO TAUS

 $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)} \text{ known up to a few \% (th) / 10\% (exp).}$

SEMI-LEPTONIC B DECAYS BEYOND TOTAL RATES

In the standard model: $V \sim \langle D | \overline{c_L} \gamma_\mu b_L | \overline{B} \rangle$ only.

The tau lepton's mass probes the scalar form factor:

$$\frac{d\Gamma(B \to D\tau\nu)}{dq^2} = \frac{d\Gamma_\ell}{dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^2 \left[1 + \frac{m_\tau^2}{2q^2} + \frac{m_\tau^2}{q^2}f(q^2)\frac{f_0^2(q^2)}{f_+^2(q^2)}\right]$$

Precise form factor predictions allow us to study the tau's properties in kinematic distributions.

[HQET: Gambino, Mannel, Uraltsev, 2010+]

THE FULL DECAY CHAIN

Alas, the tau's momentum cannot (?) be fully reconstructed experimentally:

Idea:

Obtain information on tau production *directly* from kinematics of *visible* particles in final state.

[Kiers, Soni, 1997] [Nierste, Trine, SW, 2008]

RECENT FINAL-STATE ANALYSES

Numerical approach

CP violation: [Hagiwara, Nojiri, Sakaki, 2014] $B o D
u [au o 3 \pi
u]$

Background for
$$B \to (D, \pi) \mu \nu$$
:
 $B \to (D, \pi) \nu [\tau \to \mu \nu \nu]$

[Bordone, Isidori, van Dyk, 2016]

Analytical approach

Tau pol. and asymmetry: $B \rightarrow D^{(*)}\nu[\tau \rightarrow (\ell\nu, \pi, \rho)\nu]$

> [Tanaka, Watanabe, 2010] [Sakaki, Tanaka, 2013] [Alonso, Martin Camalich, SW, 2017] [Ivanov, Koerner, Tran, 2017+]

Search for new physics: $B \to [D^{(*)} \to D(\pi, \gamma)]\nu[\tau \to (\ell\nu, \pi)\nu]$

[Ligeti, Papucci, Robinson, 2016+]

[Alonso, Kobach, Martin Camalich, 2016] [Bhattacharya et al., 2018] [Colangelo, De Fazio, 2018]

TAU PRODUCTION PROPERTIES

In *q* rest frame: $B = \int_{\overline{u}}^{D} \tau^{-}$

Tau polarizations
$$dP_i = \frac{d\Gamma_i}{d\Gamma}$$
 from
 $d\Gamma(\hat{s}) = \frac{1}{2} \Big[d\Gamma + (d\Gamma_L \hat{e}_{\tau} + d\Gamma_{\perp} \hat{e}_{\perp} + d\Gamma_T \hat{e}_T) \cdot \hat{s} \Big]$

Tau forward-backward asymmetry

$$\Gamma A_{\tau} = \int_{0}^{1} d\cos\theta_{\tau} \frac{d\Gamma}{d\cos\theta_{\tau}} - \int_{-1}^{0} d\cos\theta_{\tau} \frac{d\Gamma}{d\cos\theta_{\tau}}$$

Standard-model predictions:

 $P_L = 0.34(3), \quad P_\perp = -0.839(7), \quad A_\tau = -0.359(3)$ [Alonso, Martin Camalich, SW, 2017] $m_\tau = 0: \rightarrow 1 \qquad \rightarrow 0 \qquad \rightarrow 0$

TAU ASYMMETRY AND NEW PHYSICS

Tau asymmetry has high sensitivity to new scalar contribution:

$$A_{\tau}(q^2) \sim -\frac{m_{\tau}^2}{q^2} \left[1 + \operatorname{Re}[g_S] f(q^2) \frac{f_0(q^2)}{f_+(q^2)} + \dots \right]$$

TAU DECAYS

Tau decay branching ratios:

Channel	$ au o \mu u u$	$ au ightarrow {\it e} u u$	$ au o \pi u$	$\tau ightarrow \rho \nu$	$ au ightarrow 3\pi u$	TOTAL
${\cal B}$	17.4%	17.8%	10.82%	25%	9%	$\sim 80\%$

Hadronic tau decays have highest analyzing power:

$$\frac{1}{\Gamma_{\tau}} \frac{d\Gamma_{\tau}}{d\cos\theta_{\text{hel}}} = \frac{1}{2} (1 + \alpha P_L \cos\theta_{\text{hel}}) \qquad \qquad \ell, \pi, \rho$$
Scalar pion: $\alpha = 1$
Vector meson rho: $\alpha = \frac{m_{\tau}^2 - 2m_{\rho}^2}{m_{\tau}^2 + 2m_{\rho}^2} \approx 0.45$

$$(\bar{\nu}_{\ell})$$

Strong experimental bounds on new physics in tau decays.

[Cirigliano et al., 2018]

DIFFERENTIAL DECAY DISTRIBUTIONS

Full decay chain $B \to D\nu[\tau \to d\nu(\nu)]$: Integration over phase-space of invisible neutrinos yields

$$\frac{d^3\Gamma_d}{dq^2\,ds_d\,d\cos\theta_d} \sim I_0(q^2,s_d) + I_1(q^2,s_d)\cos\theta_d + I_2(q^2,s_d)\cos^2\theta_d$$

→ visible final state described by

$$q^2, \ s_d = E_d / \sqrt{q^2}, \ \cos \theta_d$$

[Alonso, Martin Camalich, SW, 2017] [Alonso, Kobach, Martin Camalich, 2016]

OBSERVABLES OF TAU PROPERTIES

 P_L : from energy distribution of visible tau decay particle d

$$\frac{d^2\Gamma_d}{dq^2ds_d} = \mathcal{B}_d \frac{d\Gamma}{dq^2} \Big[f_0^d + f_L^d(s_d) P_L(q^2) \Big]$$

 $P_{\perp} : \text{ from angular asymmetry of } d \text{ in } D \text{ direction}$ $\frac{dA_d}{ds_d} = \left(\mathcal{B}_d \frac{d\Gamma}{dq^2}\right)^{-1} \left[\int_0^1 d\cos\theta_d \, d^3\Gamma_d - \int_{-1}^0 d\cos\theta_d \, d^3\Gamma_d\right]$ $= f_A^d(s_d) A_\tau(q^2) + f_\perp^d(s_d) P_\perp(q^2)$

complementary to tau forward-backward asymmetry!

 P_T : requires additional information perpendicular to d-D plane (tau tracks? three-prong decay?) [see Guy Wormser's talk at Moriond EW, 2017]

EXTRACTING TAU PROPERTIES

Forward-backward asymmetry of decay particle d:

 θ_d

$$d = \pi, \rho, \ell$$
 Integrated over q^2 :
 $d_D = A_\pi = -0.54, \quad A_\rho = -0.32, \quad A_\ell = +0.06$

TAU POLARIZATION MEASUREMENT

Based on hadronic decay modes $\tau \to \pi \nu, \ \tau \to \rho \nu$: [Belle coll., 2017]

 $P_{\tau}(D^*) = P_L(D^*) = -0.38 \pm 0.51 \,(\text{stat}) \,{}^{+0.21}_{-0.16} \,(\text{syst})$

Also: D* longitudinal polarization [BELLE collaboration, 2018] $F_L^{D^*} = \frac{\Gamma(D_L^*)}{\Gamma(D_L^*) + \Gamma(D_T^*)} = 0.60 \pm 0.08 \text{ (stat)} \pm 0.035 \text{ (syst)}$ [Karol Adamczyk's talk at CKM 2018]

14

LONGITUDINAL POLARIZATION AT BELLE II

Statistical uncertainty with $N(q^2)$ events per q^2 (bin):

At BELLE II with luminosity $\mathcal{L} = 50 \,\mathrm{ab}^{-1}$: $N_{\mathrm{tot}} \approx 3000$.

PERPENDICULAR POLARIZATION AT BELLE II

Maximum-likelihood fit to energy distribution of *d* asymmetry

$$\frac{dA_d}{ds_d} = f_A^d(s_d)A_\tau(q^2) + f_\perp^d(s_d)P_\perp(q^2)$$

[[]Alonso, Martin Camalich, SW, 2017]

STATISTICAL SENSITIVITY AT BELLE II

Expected statistical precision for $\tau \to {\pi\nu, \rho\nu, \ell\nu\nu | \text{comb.}}$:

	Belle [total]	Belle II [1 year]	Belle II [total]
$\mathcal{L} [\mathrm{ab}^{-1}]/N [\mathrm{events}]$	1/60	5/300	50/3000
$\delta P_L/P_L$	$\{0.21, 0.49, 0.62 0.19\}$	$\{0.10, 0.22, 0.28 0.08\}$	$\{0.03, 0.07, 0.09 0.03\}$
$\delta P_{\perp}/ P_{\perp} $	$\{0.62, 1.8, 4.0 0.58\}$	$\{0.28, 0.81, 1.8 0.26\}$	$\{0.09, 0.25, 0.57 0.08\}$
$\delta A_{ au}/ A_{ au} $	$\{0.74, 0.69, 2.8 0.50\}$	$\{0.33, 0.31, 1.3 0.22\}$	$ \{0.11, 0.10, 0.40 0.07\} $

Theory prediction:

Best sensitivity to tau properties from hadronic decays.

BEYOND THE STANDARD POLARIZATION

Disentangle new effective b-c-tau-nu interactions:

Tension with inclusive B to tau decays Leptonic tau decays in b-c-tau-nu

[Ligeti, Tackmann, 2014] [Mannel, Rusov, Shahriaran, 2017]

[Alonso, Kobach, Martin Camalich, 2016]

[global interpretation: Svjetlana Fajfer's talk] |8

TAKE HOME

• Tau properties in semi-leptonic B decays from final states:

- longitudinal polarization $P_L \leftrightarrow d\Gamma_d(E_d)$
- perpendicular pol. and asymmetry $P_{\perp}, A_{\tau} \leftrightarrow A_d(E_d)$

(similar strategy for D^*)

• Hadronic tau decays have high sensitivity to tau properties.

• Good prospects for **measurements** at BELLE II (and LHCb?).

• Opportunity to probe **new physics** with tau interactions.

Herbstschule für Teilchenphysik Maria Laach 2007

HAPPY BIRTHDAY THOMAS!