How to discover charm CP violation

Ulrich Nierste

Karlsruhe Institute of Technology Institute for Theoretical Particle Physics

**Federal Ministry
of Education
and Research**

Heavy Quarks through the Looking Glass Siegen, 5 October 2018

Today is Thomas' 60.003th birthday!

I met Thomas for the first time in Munich in 1992, where he was introduced to us as an expert on "1/*m* expansion"

He brought his PhD student with him:

.

Today is Thomas' 60.003th birthday!

I met Thomas for the first time in Munich in 1992, where he was introduced to us as an expert on "1/*m* expansion"

He brought his PhD student with him:

.

Today is Thomas' 60.003th birthday!

I met Thomas for the first time in Munich in 1992, where he was introduced to us as an expert on "1/*m* expansion"

He brought his PhD student with him:

In that year, Robert Fleischer and I, both beginning PhD students, started to learn HQET, but soon drifted off into the worlds of penguins and boxes, respectively.

.

The BaBar physics book in 1996

The BaBar physics book in 1996 *CKM matrix and the unitarity triangle* (Proceedings of the *CKM 2002* conference)

The BaBar physics book in 1996 *CKM matrix and the unitarity triangle* (Proceedings of the *CKM 2002* conference)

The BaBar physics book in 1996 *CKM matrix and the unitarity triangle* (Proceedings of the *CKM 2002* conference)

All the best for the next 39.997 years!

- [How not to discover charm CP violation](#page-36-0)
- [How to discover charm CP violation](#page-38-0)
	- [How to really discover charm CP violation](#page-41-0)

I discuss hadronic two-body weak decays of D^+, D^0, D^+_s mesons.

 $D^+ \sim c\overline{d}$, $D^0 \sim c\overline{u}$, $D_s^+ \sim c\overline{s}$, Examples: $D^+ \to \overline{K}{}^0 \pi^+, D^0 \to \pi^+ \pi^-, D^+ \to K^0 \pi^+.$

Decays are classified in terms of powers of the Wolfenstein parameter

 $\lambda \simeq |V_{\mu s}| \simeq |V_{\alpha d}| \simeq 0.22.$

Amplitude *A* ∝ $\sqrt{ }$ $\frac{1}{2}$ \mathcal{L} λ^0 Cabibbo-favoured λ^1 singly Cabibbo-suppressed λ^2 doubly Cabibbo-suppressed

singly Cabibbo-suppressed (SCS), $\,$ A \propto λ^1

Number of D^+ , D^0 , D_s^+ decay modes:

- 4 Cabibbo-favoured,
- 5 doubly Cabibbosuppressed,
- 8 singly Cabibbosuppressed.

In the SCS amplitudes three CKM structures appear: $\lambda_d = V_{cd}^* V_{ud}, \, \lambda_s = V_{cs}^* V_{us}, \, \lambda_b = V_{cb}^* V_{ub}$ and CKM unitarity $\lambda_d + \lambda_s + \lambda_b = 0$ is invoked to eliminate one of these.

Commonly used

$$
A^{SCS} \equiv \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_b
$$

with

$$
\lambda_{sd} = \frac{\lambda_s - \lambda_d}{2} \quad \text{and} \quad -\frac{\lambda_b}{2} = \frac{\lambda_s + \lambda_d}{2}
$$

In the SCS amplitudes three CKM structures appear: $\lambda_d = V_{cd}^* V_{ud}, \, \lambda_s = V_{cs}^* V_{us}, \, \lambda_b = V_{cb}^* V_{ub}$ and CKM unitarity $\lambda_d + \lambda_s + \lambda_b = 0$ is invoked to eliminate one of these.

Commonly used

$$
A^{SCS} \equiv \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_b
$$

with

$$
\lambda_{sd} = \frac{\lambda_s - \lambda_d}{2} \quad \text{and} \quad -\frac{\lambda_b}{2} = \frac{\lambda_s + \lambda_d}{2}
$$

In view of $|\lambda_b|/|\lambda_{sd}| \sim 10^{-3}$ only A_{sd} is relevant for branching ratios.

Penguin loop contributions to *Asd* are GIM- ${\rm suppressed~(naively:} \propto (m_s^2 - m_d^2)/m_c^2).$

... are "dull" tree-level quantities dominated by a single CKM amplitude

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but
		- ... are useful to test the calculational framework and

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but
		- ... are useful to test the calculational framework and
		- ... experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but
		- ... are useful to test the calculational framework and
		- ... experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but
		- ... are useful to test the calculational framework and
		- ... experimentally determine $|A_{sd}|$, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

 \dots are proportional to Im $\frac{\lambda_b}{\lambda_{sd}}=-$ 6 \cdot 10⁻⁴ in the Standard Model

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but
		- ... are useful to test the calculational framework and
		- . . . experimentally determine |*Asd* |, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

 \dots are proportional to Im $\frac{\lambda_b}{\lambda_{sd}}=-$ 6 \cdot 10⁻⁴ in the Standard Model

... and probe new physics in flavour transitions of up-type quarks,

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but
		- . . . are useful to test the calculational framework and
		- . . . experimentally determine |*Asd* |, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

- \dots are proportional to Im $\frac{\lambda_b}{\lambda_{sd}}=-$ 6 \cdot 10⁻⁴ in the Standard Model
	- ... and probe new physics in flavour transitions of up-type quarks,

... are very difficult to predict in the Standard Model,

- ... are "dull" tree-level quantities dominated by a single CKM amplitude
	- ... and are therefore insensitive to new physics, but
		- . . . are useful to test the calculational framework and
		- . . . experimentally determine |*Asd* |, an important ingredient to predict CP asymmetries.

CP asymmetries of hadronic charm decays . . .

- \dots are proportional to Im $\frac{\lambda_b}{\lambda_{sd}}=-$ 6 \cdot 10⁻⁴ in the Standard Model
	- ... and probe new physics in flavour transitions of up-type quarks,
- ... are very difficult to predict in the Standard Model,
- ... are not discovered yet!

Direct CP asymmetries in singly Cabibbo-suppressed decays: With $A^{SCS} = A$ write λ*b*

$$
\mathcal{A} = \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_b,
$$

CP-conjugate decay: $\overline{\mathcal{A}} = -\lambda_{sd}^* A_{sd} + \frac{\lambda_b^*}{2} A_b.$

 a_{CP}^{dir} \equiv $|\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2$ $|\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2$ $=\text{Im}\frac{\lambda_b}{\lambda_a}$ $\frac{\lambda_b}{\lambda_{sd}}$ Im $\frac{A_b}{A_{sd}}$ $\frac{d}{A_{sd}}$.

Recall: $|A_{sd}| = |A|/|\lambda_{sd}|$ is fixed from measured branching ratios. \Rightarrow need $|A_b|$ and the phase of A_b/A_{sd} to predict a_{CP}^{dir} .

Find

All SM predictions for CP asymmetries involve a suppression by $\lim_{h \to 0} \frac{\lambda_b}{h} = -6 \cdot 10^{-4}$. This is also true for mixing-induced CP $\lambda_{\textit{sd}}$ asymmetries or the semileptonic CP asymmetry, which quantifies CP violation (CPV) in mixing.

All SM predictions for CP asymmetries involve a suppression by $\text{Im}\frac{\lambda_b}{\lambda_a}$ $\lambda_{\textit{sd}}$ $= -6 \cdot 10^{-4}$. This is also true for mixing-induced CP asymmetries or the semileptonic CP asymmetry, which quantifies CP violation (CPV) in mixing.

In the pre-LHC era CPV could have only been discovered if there was a substantial enhancement by new physics, with Im $\frac{\lambda_b}{\lambda_b}$ $\frac{R_{o}^{(n)}}{\lambda_{sd}}$ replaced by some $\mathcal{O}(1)$ factor. Thus the "CPV discovery channels" were identical to the "new-physics discovery channels".

With LHCb probing CP asymmetries down to SM predictions, the goals

- (a) "discover CPV if there is no physics beyond the SM" and
- (b) "discover new physics"

require different strategies:

For (a) need decay modes with large SM predictions for a_{CP}^{dir} . For (b) need decay modes with clean SM predictions for $\frac{a_{\text{C}}^{\text{dir}}}{C}$

CPV discovery channels in the SM

$$
a_{CP}^{\text{dir}} = \text{Im} \frac{\lambda_b}{\lambda_{sd}} \text{Im} \frac{A_b}{A_{sd}}
$$

= -6 \cdot 10^{-4} \text{Im} \frac{A_b}{A_{sd}}
can be O(10) in the SM,
if A_{sd} is suppressed.

Typical SM values of *a*^{dir}are below 10⁻³, thus identifying decays with large $\begin{array}{c} \hline \end{array}$ *Ab Asd* is important. (The phase $\frac{A_b}{A_b}$ $\frac{A_{g0}}{A_{sd}}$ is unpredictable, so one must be lucky.)

To learn as much as possible about A_{sd} for the various decay modes, do a correlated analysis of all available data on the branching fractions of $D^0\to K^+K^-$, $D^0\to \pi^+\pi^-$, $D^0\to K_S K_S$, $D^0\to \pi^0\pi^0$, $D^+\to \pi^0\pi^+$, $D^+_ \rightarrow \mathcal{K}_S \mathcal{K}^+,\, D^+_s \rightarrow \mathcal{K}_S \pi^+,\, D^+_s \rightarrow \mathcal{K}^+ \pi^0,\, D^0 \rightarrow \mathcal{K}^- \pi^+,\, D^0 \rightarrow \mathcal{K}_S \pi^0,$ $D^0 \to K_L \pi^0$, $D^+ \to K_S \pi^+$, $D^+ \to K_L \pi^+$, $D_S^+ \to K_S K^+$, $D^0 \to K^+ \pi^-$, $D^+\to K^+\pi^0,$ and the $K^+\pi^-$ strong phase difference $\delta_{K\pi}=$ 6.45° \pm 10.65°.

This gives essentially one ingredient of the CP asymmetries, |*Asd* |, but gives no information on $|A_b|$ and $\arg(A_b/A_{sd})$.

> S. Muller, UN, St. Schacht, Phys.Rev.D92(2015) 014004 ¨ S. Muller, UN, St. Schacht, Phys.Rev.Lett.115(2015) 251802 ¨ UN, St. Schacht, Phys.Rev.D92(2015) 054036

SU(3)*^F* symmetry

Use the approximate $SU(3)_F$ symmetry of QCD: Owing to $m_{u,d,s} \ll \Lambda_{\text{QCD}}$ hadronic amplitudes are approximately invariant under unitary rotations of

> \setminus $\vert \cdot$

 $\sqrt{ }$ \mathcal{L} *u d s*

 \Rightarrow One can correlate various $D \rightarrow K\pi$ decays.

Example: In the limit of exact $SU(3)_F$ symmetry find

$$
\mathcal{B}(D^0\to \pi^+\pi^-)=\mathcal{B}(D^0\to K^+K^-).
$$

Data show $\mathcal{O}(30\%)$ SU(3)_F breaking in the decay amplitudes. It is possible to include $SU(3)_F$ breaking to first order (linear breaking) in the decomposition of the decay amplitudes in terms of $SU(3)_F$ representations.

Combine topological amplitudes (Chau 1980,1982; Zeppenfeld 1981) with linear SU(3)_F breaking (Gronau 1995).

 $SU(3)_F$ limit:

tree (T) color-suppressed tree (C) exchange (E) annihilation (A)

Feynman rule from $H_{\text{SUE}} = (m_s - m_d)$ *Ss*: dot on *s*-quark line. Find 14 new topological amplitudes such as

The theory community has delivered a perfect service to the experimental colleagues:

The theory community has delivered a perfect service to the experimental colleagues:

Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

The theory community has delivered a perfect service to the experimental colleagues:

Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

- within the Standard Model and
- as evidence for new physics!

Generic problem: For CP asymmetries we need *A^b* which involves new hadronic quantities which do not appear in A_{sd} and are therefore not constrained by branching fractions.

E.g. new $SU(3)$ representations or, in our analysis, new topological-amplitudes.

Prominent example:

Penguins P_s and P_d appear in other combinations than $P_{\text{break}} = P_s - P_d$. We also need $P_s + P_d - 2P_b$.

Experimentally $a_{CP}^{\text{dir}}(D^0 \to \pi^+\pi^-)$ and $a_{CP}^{\text{dir}}(D^0 \to K^+K^-)$ are well constrained. Status of 2015:

 $\Delta a_{CP}^{\rm dir} \equiv a_{CP}^{\rm dir}(D^0 \to K^+K^-) - a_{CP}^{\rm dir}(D^0 \to \pi^+\pi^-) = -0.00253 \pm 0.00104$ Σ *a* $_{CP}^{\rm dir}\equiv$ *a* $_{CP}^{\rm dir}(D^0\to K^+K^-)+$ *a* $_{CP}^{\rm dir}(D^0\to\pi^+\pi^-)=-0.0011\pm0.0026$

Topological amplitudes:

$$
\mathcal{A}_{sd}(D^0 \to \pi^+\pi^-) = -T - E + P_{\text{break}}
$$

$$
\mathcal{A}_b(D^0 \to \pi^+\pi^-) = T + E + P + PA
$$

It is useful to eliminate $T + E$ in A_b in favour of A_{sd} :

$$
A_b(D^0 \to \pi^+\pi^-) = -A_{sd}(D^0 \to \pi^+\pi^-) + P_{\text{break}} + P + PA
$$

$$
\Rightarrow \qquad \text{Im}\frac{A_b(\pi^+\pi^-)}{A_{sd}(\pi^+\pi^-)} = \text{Im}\frac{P_{\text{break}} + P + PA}{A_{sd}(\pi^+\pi^-)}
$$

Similarly for $\overline{D^0} \to K^+ K^-$ (up to $\overline{\mathsf{SU}(3)_\mathsf{F}}$ breaking):

$$
\mathrm{Im}\, \frac{A_b(K^+K^-)}{A_{sd}(K^+K^-)} = \mathrm{Im}\, \frac{P_{\mathrm{break}}-P-PA}{A_{sd}(\pi^+\pi^-)}
$$

Thus ∆*a* $_{CP}^{\rm dir}$ rules out spectacular enhancements of P + PA and Σ*a* $_{CP}^{\rm dir}$ likewise constrains P_{break} .

⇒ To find CPV look for alternatives to *P*, *PA*!

$$
\mathcal{A}(D^0 \to K_S K_S) = \lambda_{sd} \mathcal{A}_{sd} - \frac{\lambda_b}{2} \mathcal{A}_b.
$$

Special feature I:

In the SU(3)_F limit: $A_{sd} = 0$ while $A_b \neq 0$

 \Rightarrow \quad suppressed $\mathcal{B}(D^0 \rightarrow K_S K_S) = (1.7 \pm 0.4) \cdot 10^{-4}$ enhanced $a_{CP}^{\text{dir}} \propto \text{Im} \frac{A_b}{\textit{A}}$ *Asd*

Special feature II:

 $a_{CP}^{\text{dir}}(D^0\to K_S K_S)$ receives contributions at tree level, from the (sizable!) exchange diagram:

Result: a_{CP}^{dir} can be large. We find:

 $|a_{CP}^{\text{dir}}(D^0 \to K_S K_S)| \le 1.1\%$ @95% C.L.

The CP violation in $K-\overline{K}$ mixing is meant to be subtracted. UN, St. Schacht, Phys.Rev.D92(2015) 054036

Experiment determines

$$
A_{CP} = a_{CP}^{\text{dir}} - A_{\Gamma} \frac{\langle t \rangle}{\tau},
$$

where $\langle t \rangle$ is the average decay time and τ is the D^0 lifetime.

$$
A_{CP}^{\text{CLEO 2001}} = -0.23 \pm 0.19
$$

 ${\cal A}_{CP}^{\rm LHCb\,\, 2015} = -0.029 \pm 0.052 \pm 0.022$

 ${\cal A}_{CP}^{\rm Belle\,\,2016} = -0.0002 \pm 0.0153 \pm 0.0017$

UN, St. Schacht, Phys.Rev.Lett. 119 (2017) 251801

Two *D* ⁰ → *KK*[∗] decays:

$$
\begin{aligned} D^0\to & \overline{K}^{*0}[\to K^-\pi^+]K^0\\ D^0\to & K^{*0}[\to K^+\pi^-]\overline{K}^0 \end{aligned}
$$

with the $\mathcal{K}^0,\,\overline{\mathcal{K}}^0$ hadronising into $\mathcal{K}_\mathcal{S}.$ Write shortly:

$$
\mathcal{A}(\overline{K}^{*0}) \equiv \mathcal{A}(D^0 \to \overline{K}^{*0} K^0) \mathcal{A}(K^{*0}) \equiv \mathcal{A}(D^0 \to K^{*0} \overline{K}^0).
$$

Each diagram comes in two variants, e.g.

D ⁰ → *KK*[∗]

Topological amplitudes:

 $\mathcal{A}_{\mathcal{S} \mathcal{d}}(K^{*0}) = \quad E_P - E_V + E_{P3} - E_{V1} - E_{V2} - P \mathcal{A}_{PV}^{\text{break}}$ $\mathcal{A}_b(K^{*0}) = -E_P - E_V - E_{P3} - E_{V1} - E_{V2} - P A_{PV}$ $=\mathcal{A}_{\mathcal{S}d}(K^{*0})$ $-2E_P$ – $2E_{P3}$ – P A $_{PV}$ + P A $_{PV}^{\rm break}$ $\mathcal{A}_{\mathcal{sd}}(\overline{K}^{*0}) = -E_P + E_V$ − E_{P1} − E_{P2} + E_{V3} − P A $_{PV}^{\text{break}}$ $\mathcal{A}_b(\overline{K}^{*0}) = -E_P - E_V - E_{P1} - E_{P2} - E_{V3} - P A_{PV}$ $=\mathcal{A}_{\mathcal{S} \mathcal{d}}(\overline{K}^{*0})$ $-2E_V-2E_{V3}-\mathit{PA}_{PV}+ \mathit{PA}_{PV}^{\text{break}}$.

$$
\Rightarrow a_{CP}^{\text{dir}}(D^0 \to \overline{K}^{*0} K^0) = \text{Im} \frac{\lambda_b}{\lambda_{sd}} \text{Im} \frac{A_b(\overline{K}^{*0})}{A_{sd}(\overline{K}^{*0})}
$$

$$
\approx -\text{Im} \frac{\lambda_b}{\lambda_{sd}} \text{Im} \frac{A_b(K^{*0})}{A_{sd}^{*}} = -a_{CP}^{\text{dir}}(D^0 \to K^{*0} \overline{K}^0) = a_{CP}^{\text{dir}}(\overline{D}^0 \to \overline{K}^{*0} K^0)
$$

D ⁰ → *KK*[∗]

 $a_{CP}^{\rm dir}(D^0\to \overline{K}^{*0}K^0)\approx a_{CP}^{\rm dir}(\bar{D}^0\to \overline{K}^{*0}K^0)$ means that no flavour tagging is needed: $\left(\frac{1}{2} \right)$

$$
d_{CP}^{\text{dir}}(\overleftarrow{D}\xrightarrow{+} K_S K^{0*})\approx d_{CP}^{\text{dir}}(D^0\rightarrow K_S K^{0*})
$$

Using

$$
\mathcal{B}^{\text{exp}}(D^0 \to K^{*0} K_S) = (1.1 \pm 0.2) \cdot 10^{-4} \,, \newline \mathcal{B}^{\text{exp}}(D^0 \to \overline{K}^{*0} K_S) = (0.9 \pm 0.2) \cdot 10^{-4} \,.
$$

from experiment to determine $|E_P - E_V| = (1.6 \pm 0.2) \cdot 10^{-6}$ we find

 $|a_{CP}^{\mathsf{dir,~untag}}| \lesssim$ 0.003.

The maximum corresponds to $\arg(E_V/E_P) = 0.14 \pi$.

Another goodie: One can scan the $K^+\pi^-K_S$ Dalitz plot near the K^{*0} resonance for a favourable $\arg(E_V/E_P)$.

- "Charm CPV discovery within the SM" and "New-physics discovery through CPV" require different strategies.
- Within the Standard Model the direct CP asymmetry in the charm decay in $D^0 \to K_S K_S$ can be as large as 1.1%. $a_{CP}^{\text{dir}}(D^0 \rightarrow K_S K_S)$ is dominated by the exchange diagram, which involves no loop suppression. View $D^0 \to K_S K_S$ as a discovery channel for charm CP violation.
- The same is true for $D^0 \to K^{*0} K_S$, which moreover requires no tagging to measure $\textit{a}_{\textit{CP}}^{\textit{dir.}}$ $\textit{a}_{\textit{CP}}^{\textit{dir, untag}}(\textit{D}^0\rightarrow\textit{K}^{*0}\textit{K}_{\textit{S}})$ can be as large as 0.3%.