LHCb: Precision beauty physics and the emergence of flavour anomalies Johannes Albrecht (TU Dortmund) 3. September 2018

Emmy Noether-Programm

Forschungsgemeinschaft

erc

530 (total) 0.001 [e⁺e⁻ at Y(4S)] 2008 **BaBar** Belle 1040 (total) 0.001 [e⁺e⁻ at Y(4S)] 2010 CDF/D0 100 [pp at 2 TeV] 12 (total) 2011 ATLAS/CMS 2035 (?) 55 (so far) 250-500 [pp at 7-13 TeV] >8.5 (so far) 2035 (?) LHCb 250-500 [pp at 7-13 TeV] Belle 2* >0.25 (so far) 0.001 ~2025 * 2018 run w/o vertex detector 5. @ktober 2018 **Johannes Albrecht**

2/30

інсь

- Classic, broad range measurements
 - CKM Physics, search for very rare (forbidden) decays
- Measurements in specific sectors, where anomalies are emerging in recent years
 - $\mathbf{b} \rightarrow \mathbf{s} \ \ell^+ \ell^-$ transitions, specifically issues with lepton-flavour universality
 - Issues with lepton-flavour universality in $b \to c$ transitions
- Spectroscopy:

better understand QCD in the low energy regime

Many striking measurements with four- and five-quark states

- Classic, broad range measurements
 CKM Physics, search for very rare (forbidden) decays
- Measurements in specific sectors, where anomalies are emerging in recent years
 - $\mathbf{b} \rightarrow \mathbf{s} \ t^+ t^-$ transitions, specifically issues with lepton-flavour universality
 - Issues with lepton-flavour universality in $b \rightarrow c$ transitions
- Spectroscopy:

better understand QCD in the low energy regime

Many striking measurements with four- and five-quark states

B_s-Mixing and CP ciolation

Observables:

- $\Delta m_s = mixing frequency$
- $\Delta\Gamma_{s}$ = decay width difference $B_{L} \& B_{H}$
- ϕ_s = CP-violating phase

Measurement of B_s mixing

CP violating phase ϕ_{q}^{*}

- Measure CP violating phase in $B_s \rightarrow J/\psi \phi$ decays*
- Standard Model prediction: •

 ϕ_s $\phi_{\rm mix} = 0.04 \pm 0.01$

A. Lenz, arXiv:0705.3802

 V_{tb} b

Measurements:

5. Oktober 2018

Johannes Albrecht

7/30

CKM matrix @ 1st Thomas Fest

Precision measurements of CP violation in the B-System continues...

5. Oktober 2018

- Classic, broad range measurements
 CKM Physics, search for very rare (forbidden) decays
- Measurements in specific sectors, where anomalies are emerging in recent years
 - $\mathbf{b} \rightarrow \mathbf{s} \ \ell^+ \ell^-$ transitions, specifically issues with lepton-flavour universality
 - Issues with lepton-flavour universality in $b \to c$ transitions
- Spectroscopy:

better understand QCD in the low energy regime

Many striking measurements with four- and five-quark systems

tu

$b \rightarrow s \ \mu^+\mu^-$ base diagram

- Purely leptonic
 "add nothing"
- Semileptonic
 - add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
 - add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$
- Ratios:
 - Compare muons to electrons

Theory prediction: Standard Model

decay	SM		
$B_s \rightarrow \mu^+ \mu^-$	3.5±0.3 x 10 ⁻⁹		
$B^0 \rightarrow \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰		

SM: Buras, Isidori et al: EPJC72(2012) 2172 Mixing effects: Fleischer et al, PRL109(2012)041801

Left handed couplings → helicity suppressed

Discovery channel for New Phenomena

→ Very sensitive to an extended scalar sector (e.g. extended Higgs sectors, SUSY, etc.)

Theory prediction: Standard Model

decay	SM		
$B_s \rightarrow \mu^+ \mu^-$	3.5±0.3 x 10 ⁻⁹		
$B^0 \rightarrow \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰		

SM: Buras, Isidori et al: EPJC72(2012) 2172 Mixing effects: Fleischer et al, PRL109(2012)041801

Discovery channel for New Phenomena

→ Very sensitive to an extended scalar sector (e.g. extended Higgs sectors, SUSY, etc.)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \cdot 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \cdot 10^{-10}$$

5. OK to be 1204 8-HC run I)

6.2 σ significance \rightarrow first observation

- compatible with SM at 1.2σ
- 3.0 σ significance \rightarrow first evidence
- compatible with SM at 2.2σ

6 most sensitive Johannes, Adbreat HCb (LHC run I)

$B \rightarrow \mu^+ \mu^-$: News from run 2 data

PRL118(2017)191801

LHCb has recently published a first run 1 + run 2 analysis (3+1.4fb⁻¹) updated analysis with improved background suppression

- 7.8 σ signal & first singleexperiment observation !
- Precise measurement of branching fraction

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6 \,{}^{+0.3}_{-0.2}) \times 10^{-9}$

 No evidence yet of the corresponding B⁰_d decay (< 3.4 x 10⁻¹⁰ at 95% C.L.)

No sign of 1st order New Physics effect! B $\rightarrow \mu^+\mu^-$ becomes a precision test

$b \rightarrow s \ \mu^+\mu^-$ base diagram

- Purely leptonic
 - "add nothing"

• Semileptonic

- add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
- add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
- add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$
- Ratios:
 - Compare muons to electrons

• Full Run 1 analysis confirms effect

Situation unclear.... If real, expect discrepancies in other $b \rightarrow s$ decays ...

5. Oktober 2018

Other $b \rightarrow s \ \mu^+\mu^-$ decays

- Decay modes with same effective Feynman diagram accessible
 - \rightarrow different spectator quarks

 Test for same new effects
 → expect suppressed branching fractions

Branching fractions of $b \to s \ \mu^+ \mu^-$

- Analysis of large class of $b \rightarrow s, d \mu^+\mu^-$ decays
 - Several tensions seen, but individual significance is moderate
 - Tendency to undershoot prediction of differential x-sections
 - → intriguing hint or TH issue in prediction?

→ We need cleaner tests ...

In the SM, leptons couple universally to W[±] and Z⁰
 → test this in ratios of semileptonic decays

Ratios differ from unity only by phase space
 → hadronic uncertainties cancel in the ratio

LFU: electron vs. muon (R_k)

PRL 113 (2014) 151601

LHCb measures with 3fb⁻¹

$$R_{K} = \frac{BR(B^{+} \to K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \to K^{+}e^{+}e^{-})} = 0.745 \quad \begin{array}{c} +0.090 \\ -0.074 \end{array} \quad (stat) \pm 0.036(syst)$$

(SM JHEP12(2007)040: R_k=1.0, consistent at 2.6 σ)

5. Oktober 2018

.. and R_{K^*} : Mass distributions

JHEP 08 (2017) 055

- Great efforts to check efficiencies from data with $\ B^0 \to J/\psi \; K^{*0}$

 $r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))} = 1.043 \pm 0.006 \text{ (stat)} \pm 0.045 \text{ (syst)}$

- Similar cross check with $\psi(2S)$
- Attention paid to partially reconstructed region & potential J/ψ leakage
- Measurement performed in two regions of q² = m(μ⁺μ⁻)

.. and R_{K*}: Measurement

JHEP 08 (2017) 055

Reconstructed event yields

LFU measurements summary

.. and R_{K*}: Measurement

JHEP 08 (2017) 055

LFU measurements summary

Reconstructed event yields

Lepton flavour universality in $b \rightarrow c$

- Surprises possible in tree-level analyses
- $B^0 \rightarrow D^{(*)} \ell \nu$ Measures ratio τ^- / μ^-
 - Multiple experiments: Belle, Babar, LHCb
 - Multiple D-modes: D, D*
 - Multiple tau final states: μ - ν , 1-prong, 3 prong
- Challenging Analyses
 - Missing neutrino, complex backgrounds (e.g. $B \to D^{**} \; \mu$)

$$R_{D^*} = \frac{BR(B^0 \to D^{*+} \tau^- \overline{v})}{BR(B^0 \to D^{*+} \mu^- \overline{v})}$$

Lepton flavour universality in $\mathbf{b} \to \mathbf{c}$

Measurements from BaBar, Belle, LHCb show anomalies

R(D) from FLAG working group [EPJC 77 (2017) 112 $R(D^*)$ from S. Fajfer et al. [PRD 85 (2012) 094025].

Combination yields 3.8σ tension ...

.. need more data for conclusion

5. Oktober 2018

LFU in B_c decays

PRL120 (2018) 121801

5. Oktober 2018

Summary

- No summary needed
- Instead, Thorsten borrowed me his magic looking glass

Michael Custode

One slide from the Thomas Fest 2028

Flavour anomalies ($b \rightarrow s$ and LFU) very significantly measured by the LHCb, CMS and Belle2 experiments All CKM angles tested below 1 degree. Lots of room for new effects to be uncovered

Future $\mathbf{b} \rightarrow \mathbf{c}$

0.34

0.32

0.3

 $R(D^*)$

arxiv:1709.10308

R(D)

Expected sensitivity: LFU in $b \rightarrow s$

- Global fit to $b \rightarrow s$ data: Current data well consistent with C₉ – 25%
- If current tensions persist, they will will be established with >5σ by LHCb (Run 2), and then also by Belle2

	$\mathcal{A}(B \to K^* \pi^*) 10^{-1} $	4	Belle II
		diffo	O LHCb/Belle II
	COMP(Chi)(Chi)(Contact of Contact of Conta		Z Belle II
	$\mathbf{T}: \mathcal{B}(B \to \mu\nu) \begin{bmatrix} 10^{-6} \\ 10^{-6} \end{bmatrix} \text{ and } \mathbf{D} \text{ where is a }$	7%	Belle II
-	• I I I I I I I I I I I I I I I I I I I	3%	Belle II
IIICh	$-\frac{R(B_{PV}/I_{n}^{*}\tau_{R})}{1} \rightarrow I/\mu \oplus B \rightarrow \phi\phi$	2%	Belle II&LHCb
LHCU	Radiative & EW Penguins' $rac{1}{5}$ $\psi\psi$.~	charaod
THOR	• $B_s \xrightarrow{\mathcal{B}(\mathcal{B})} \mathfrak{U}_{\mathcal{D}}^{\dagger} \mathfrak{U}_{\mathcal{V}}^{\overline{s\gamma}}$	4%	
IIIGP	$S A_{CP}(B \to A_{s,d}\gamma) [10] $	0.005	Gacks"
-	• $CK_{2}\gamma$ ***	0.05 0.05	LHCb
	• $\mathbf{O}\mathbf{P}(B \mapsto \rho \mathbf{r})$ **	0.07	Belle II
° Con	• $\mathbf{CP}_{\mathcal{B}}(B_s \to \gamma\gamma) 1[10^{-6}]$ **	0.3	Belle II
	• $\mathbf{B} \xrightarrow{\mathcal{B}(B_{\mathbf{V}} \to K_{\mathbf{T}}^* \nu \overline{\nu})} (10^{-6})$	15%	Belle II
		20%	Belle II
$_{g}$	• $\mathbf{B} \xrightarrow{q_0^* A_{\mathbf{F}}(B)}_{\mathcal{D}} \times (\mathbf{e} \times \mathfrak{S})^{K^* \mu \mu}_{\mathcal{D}}$	0.05	LHCb/Belle II
	$\mathcal{B}(B_s \xrightarrow{\bullet} \mu \mu) \qquad $	< 2 10%	moment and II
	Charm physics	1070	
	$\mathcal{B}(D_{1} \to \mu\nu) \qquad \qquad$	0.9%	ov e rlap:
	 Semileptonic B decays 	2%	Belleri
	$\Delta A_{CP}(D^0 \to K^+ K^-) [10^{-4}] $	0.1	SPHCPLA
e ⁺	• $\mathbf{B} \xrightarrow{\mathbf{A}_{CH}} (D\mathbf{T} \rightarrow \mathbf{W}_{S}^{0} \mathbf{B}) \xrightarrow{10^{-1}} \mathbf{D} \xrightarrow{\mathbf{T}} \mathbf{V}$	0.03	
	$ q/p _{OSErVal Mest \pi} \rightarrow \text{Expected}$	10.080-	Expected exame un- Facility
		4	Certainty Dene II
e^{-}	• $\tau -\tau \rho h \omega s \Gamma S \cdot I F \vee *** ***$	< 5	0.4 Belle II Delle
C v	$\tau \rightarrow e \gamma_{0} [10^{-9}] \qquad *** \qquad $	< 10	1.0 Belle II Belle
	• $\mathbf{B} \xrightarrow{\tau \to \mu^{-} \nu} \mu^{-} \nu^{***} * * * * * * * * * * * * * * * * * $	< 0.3	1.0 Belle II/LHCb
	$ \xrightarrow{\varphi_3} I/\psi_{*} $		
	• $B \rightarrow H^* \nu \nu, B \rightarrow \nu \nu$ ***		$\frac{1}{10}$ "inclusive $\frac{1}{10}$
	$\mathbf{D} = \mathbf{V}_{cb} \mathbf{W}_{cb} \mathbf{W}_{cb}$		1.5% neutrals Belle
	• $\mathbf{B} \rightarrow \underbrace{\mathbf{X}}_{V_{ab}}^{b} \underbrace{\mathfrak{e}^{*} \mathfrak{e}^{\mathbf{h}}}_{\text{incl.}}$ (inclusive) $\overset{***}{**}_{**}$		1.5% neutrals Belle Belle
Belle II	• $\mathbf{B} \rightarrow \underbrace{\mathbf{X}_{b}}_{V_{ub}} \underbrace{\mathbf{f}^{*} \mathbf{f}^{1}}_{\text{incl.}} \text{(inclusive)} \overset{***}{**} \\ \bullet \mathbf{B} \rightarrow \underbrace{\mathbf{X}_{b}}_{V_{ub}} \underbrace{\operatorname{extinclusive}}_{\text{incl.}} \overset{**}{*} $		1.5%neutralsBelle3%Belle2%Belle
Belle II	• $\mathbf{B} \rightarrow \underbrace{\mathbf{X}}_{[V_{ub}]}^{[V_{cb}]} \underbrace{\mathbf{f}}_{\mathrm{incl.}}^{**}$ (inclusive) $***$ • $\mathbf{B} \rightarrow \underbrace{\mathbf{X}}_{[V_{ub}]}^{[b]} \underbrace{\mathbf{f}}_{\mathrm{incl.}}^{*}$ (inclusive) $**$		1.5%neutralsBelle3%Belle2%Belle
Belle II	• $\mathbf{B} \rightarrow \mathbf{X}_{ub} \overset{\text{recl.}}{\underset{V_{ub}}{\text{recl.}}} (\text{inclusive}) \overset{***}{\underset{K^*}{\text{recl.}}}$ • $\mathbf{B} \rightarrow \mathbf{X}_{ub} \overset{\text{recl.}}{\underset{CPV}{\text{recl.}}} (\text{inclusive}) \overset{***}{\underset{K^*}{\text{recl.}}}$		1.5% 3% 2%neutrals Belle Belle0.02Belle