
0

13.01.17 DRAFT 1

B EE R
1

Improving site efficiency by integrating

storage nodes and batch processing

Batch on EOS Extra Resources

2

BEER Contributors
 IT-CM

 Tim Bell, Ben Jones, Domenico Giordano,

 Gavin McCance, Jaroslava Schovancova, Havard Tollefsen

 IT-ST
 Dirk Duellmann, Massimo Lamanna, Herve Rousseau

 IT-DI
 Markus Schulz, Andrea Sciaba, Andrea Valassi, David Smith

 Petersburg Nuclear Physics Institute
 Andrey Kirianov

3

Background
 EOS is CERN’s large storage management

system

 https://eos.web.cern.ch/

 Frequent reports at HEPiX

 The hardware architecture follows CERN’s
commodity paradigm

 Disk servers are based on standard servers with
shelfs of disks

4

https://eos.web.cern.ch/

Motivation
 Observation of relative low average loads on our storage systems

 Often I/O bound (internally and network)
• Most nodes are not CPU saturated even when they are I/O saturated

 Average usage per server node (snapshot):
 Read: 35MB/sec - 67MB/sec, write: <10MB/sec

 IOPS: read 290-500 Hz, write: 28Hz

 CERN has a relatively large storage system O(1000) nodes
 Several have 32 cores with 2GB/core

 Questions:
 Can we make use of some of these cores?

 What value does this correspond to?

 Proof of concept tests where done by Andrey using some older nodes.

5

Computing loads on storage servers
• On the ALICE EOS cluster average CPU utilization is ~20% – left plot

• ALICE EOS disk server with highest CPU utilization is ~60% – right plot

• But: Mostly IOWait, which can be used by other processes Significant Potential

Cluster Node

IOWait

Idle

IOWait

Idle
Average: System+User+IRQ < 10%

Busy: System+User+IRQ < 20%

6

Current Loads
• ALICE EOS cluster average CPU utilization is <=20% – left plot

• ALICE EOS disk server CPU utilization is <=20% – right plot

• Mostly IOWait, which can be used by other processes Significant Potential

7

Average: System+User+IRQ < 20% IdleIdle
Busy: System+User+IRQ < 20%

Node Cluster

First Steps

 Proof of concept tests by Andrey Kiryanov

 Testbed (puppetized)

• Small EOS system(s)

• Client/load-generator cluster

• Condor based test with computational loads

• Using lhc@home

• Boinc based system

• Using nice to limit impact on EOS

8

First test system

 13 hosts as load generators
 EOS Xrdstress tool generates I/O loads

 Up to full saturation

• 4 EOS storage nodes (old nodes > 3years)
• 22 disks 1 Gbits network, EOS 4.1, xrootd 4.5, 6.54 HEP-

SPEC06/core, 4 cores

• 1 EOS head node
• 10Gbits

• Condor runs payloads directly, no virtualization involved
• psacct has been used for accounting

9

I/O load
generator

s
(13 hosts)

EOS head
(namespace in memory)

EOS disk server 1
+

Condor (vLHC@Home)

EOS disk server 2
+

Condor (vLHC@Home)

EOS disk server 3
+

Condor (vLHC@Home)

EOS disk server 4
+

Condor (vLHC@Home)

file I/O

1Gbps
22X

22X

22X

22X

Test system performance measurements

No significant difference in I/O:

• 357 MB/s read

91 MB/s write

in hybrid mode

• 357 MB/s read

96 MB/s write

in EOS-only mode

• Servers limited by network.

• Load/node comparable with

production

• ~90% CPU used by vLHC@home

Xrdstress on and the vLHC@Home processes in the background.

vLHC@home ON

vLHC@home OFF

10

Corner case: 100% I/O saturation
 Used Hybrid

Testbed v1

 Generated
local load on
disks

 Almost no
impact on I/O
or memory

 ~40% CPU
used by
vLHC@home

Condor OFF Condor

ON

No I/O performance degradation

11

Corner Case

12

Payload OFF Payload ON

Payload OFF

Payload OFF

Payload OFF Payload ON

Payload ON

Payload ON

There’s almost no visible impact from extra compute

payload: neither disk performance nor memory

utilization suffer from background low-priority tasks.

Testbed 2 to increase the I/O load

• Hybrid Test Bed vs 2

• 10 Gbps link for data access
• But only 4 disks

I/O load
generators
(13 hosts)

EOS head
(namespace in memory)

EOS disk server 1
+

Condor (vLHC@Home)
4X

161 MB/s read
93 MB/s write

EOS only

156 MB/s read
93 MB/s write

EOS +
vLHC@home

• Very little impact on I/O
• Limited by disks

• > 60% CPU for vLHC@home

13

Tests with more recent hardware

14

• New disk server with decent hardware

– Dual E5-2630 v3 @ 2.40GHz (32 vcores with HT)

– 64 GB RAM

– 48 spinning disks 6TB each + 2 SSD (OS + swap)

– 10 Gbps network

I/O load
generators

(7 hosts)

EOS head
(namespace in memory)

EOS disk server
+

Condor (vLHC@Home)
48X

Running with compute payload

15

>80% of CPU resources used for compute payload

5Gbps write followed by 8Gbps

read

A
lm

o
s
t

id
e
n
ti
c
a
l
re

s
u
lt
s

Running with no payload

16

>80% of CPU resources are wasted

No I/O performance

improvement

Other Resources

17

Payload OFF

Payload OFF

Payload OFF

Payload ON

Payload ON

Payload ON

Payload OFF

Payload ON

Compute payload doubles

the interrupt rate, but

modern CPUs cope easily

with it.

The number of used

sockets is also doubled, but

stays constant over time.

M
e

m
o

ry
In

te
rru

p
ts

What did we learn?
 With a simple setup Storage and Computing

can be run without much interference
 HTCondor + nice

 For typical I/O loads in production we can
expect to use >80% of the CPU for non storage
tasks
 Worst case would be about 50%

 Interesting....... But....

18

How to turn this into production?

 Needs to be deployable

 Configuration Management challenge

• Two services on the same node

 Protecting the primary task (EOS)

 Resources (CPUs, memory)

 Halting the computational tasks on demand

 Monitoring

19

A Model emerged
 “Partition” the resources

 To guarantee that storage performance is not crippled

 To provide accountable resources (not like lhc@home)

 Control groups (Cgroups)

 Run Condor jobs in Containers
• Using Cgroups to limit resource usage

 One puppet configuration for the node

 Integrate resources in CERN’s Condor batch system
 Queues for suitable workloads

 BEER Pilot to explore this approach
 Participation from storage and batch team

 JIRA for ticketing

20

Condor + Containers

21

EOS

Condor

cgroups

Monitored by:
cadvisor/collectd

job job

job

job

container

cores

memory

Local disk

Cores reserved for EOS Cores integrated in Condor running
jobs at low priority, memory and
scratch space restricted by cgroups,

Testbed #3
 Three disk servers: each

 48 6TB HDD (1 HDD apparently failed on one server)

 2 x E5-2630 v3 (haswell; 2 x 8 physical cores => 32 w/ SMT)

 2 x 800GB SSD (Intel DC S3510 series; 0.3 DWPD for 5 yrs)

 10Gbit network

 Centos7; EOS 0.3.240 (Aquamarine)
 Using puppet, hostgroup based on eos hostgroup and using modified eos module and

cerncondor module (beer branch)

 Local Disc Setup:
 1 ssd set aside for the batch work (including addition of 96GB swap)

 CVMFS installed

 cerncondor module used to install and run condor

 Changes in the batch environment (possibly amongst others):
 set memory.memsw.limit_in_bytes and add condor to the cpuset cgroup controller:

cpuset.cpus and cpuset.mems

 (systemd already set mem limit, but no support for memsw or cpuset)

22

Limits
 Memory limit

 is set as a parameter in /etc/systemd/system/condor.service and systemd uses the
setting when setting up the cgroup for the condor service: 48GB

 But does not limit swap usage

 Modified condor.service to also set memsw limit (ram + swap) to 96GB

 Add condor to another cgroup using cpuset
• cpus 2-7,10-15,18-23,26-31

• leaves 4 physical cores entirely excluded covering both sockets

• Later only number of cpus has been limited.

 Condor configured to offer 24 job slots and 96GB ram

 Number of processes has been limited to 8000

 blkio is used to control the I/O scheduling
 Blkio.weight == 50

 Network traffic limits can be set via iptables on the docker level, but are currently
not used.

 See detailed setup description at the end

23

Load generation
 For load run 10 instances of xrdstress

 4 jobs; 20 files; rw; size 1GB +- 256MB on 4 hosts

 No difference between 3 and 4 hosts saturation

 Run 3 ATLAS Pile job (8 cores per job)
 Staging pileup data on node

 Signal + min bias mixing;

 Digitisation

 Trigger simulation

 Reconstruction

 Convert ESD to AOD

 Start jobs with short delay

 Similar, shorter, job has been added to HammerCloud
• For generating steady stream of jobs

24

Test Job:
2000 MC Events, 8 cores

25

Digitisation & Pileup
Trigger

Verification
Reconstruction Raw2ESD ESD2AOD

Merge

Verify

Pileup

30GB

MC-

Geant

1.5GB

MC

RAW

RDO

4.6GB

MC

RAW

RDO

4.6GB

TRG

RAW

RDO

5.2 GB

TRG

RAW

RDO

5.2 GB

ESD

6.0 GB

ESD

6.0 GB

AOD

700MB

AOD

680 MB

AOD

700MB

26

I/O ON

job OFF

I/O ON

job ON

I/O OFF

job ON

Out = load + replication

No difference in I/O performance!

Phase 3

Job Performance
 Phase 1: I/O ON 9 jobs considered

 CPU time (not including for stage in): 97901s spread 2003s

 WALL time (not including stage in): 15172s: spread 308s

 WALL time (stage in): 792s: spread 250s

 Phase 2: I/O OFF 8 jobs considered
 CPU time: 95709s: spread 5048s

 WALL time (not stage in): 14320s: Spread 625s

 WALL time (stage in): 2719s: Spread 64s

 Phase 3: I/O ON and OFF,9 jobs
 CPU time 98600s: spread 2034s

 WALL time (not stage): 14651s: spread 403s

 WALL time (stage in): 1063s: spread 348s

27

C
P

U
 a

n
d

 W
A

L
L

 t
im

e
 a

re
 n

o
t

a
ff

e
c
te

d
 b

y
 E

O
S

 I
/O

WALL for stage in isn’t understood

Preproduction
 3 test servers

 4 nodes from EOS pre-production
cluster

 HammerCloud (ATLAS Pile job)
 Hammercloud submits to Condor,

Condor schedules and starts the job
like a standard Grid job

 ATHENA MP (i.e. each job starts 4
processes)

• About 30 mins runtime (choose a small
number of events / job)

 Currently 70 more nodes are prepared

 Opening for use by experiments use
soon after
 Not as a production service

28

Still to be addressed
 Currently we only have the standard node

monitoring (monit)

 We need, at least for the first “real” jobs more
detailed monitoring

 Running tests with production I/O loads

 With and without jobs

 Running stress tests on production services is

not advisable 🧐

29

What have we learned?

 There is always room for another

30

B EE R

Details on the configuration
 EOS standard configuration has been extended by using another module called “cerncondor”:

https://gitlab.cern.ch/ai/it-puppet-module-cerncondor/tree/beerlite/code

On disk servers where htcondor is wanted, the cerncondor module is listed in the disk server’s hostgroup along with some related parameters.
e.g. here is a commit adding it to a selected number of PPS nodes:

https://gitlab.cern.ch/ai/it-puppet-hostgroup-eos/commit/2a237b3806eaad608ff8bc6616b114ffb57b6273

The cerncondor module installs htcondor & cvmfs. The parameters set tell puppet how to configure htcondor (number of job slots and memory etc.) The core count
parameter is written in terms of a number of cores to reserve, and htcondor is configured by puppet using the total number of cores available in the machine minus
the number reserved.

Docker is now also configured explicitly in the hostgroup, The puppet docker configuration lists a number of images that puppet ensures are installed locally: Images
are hosted at a repository, and if the image changes on the remote repository puppet will update the local image. The image name used by the jobs is set on the
htcondor servers and not the EOS/beer nodes themselves. Jobs do not modify the image, changes a job makes are kept separate and discarded at the end of the
job.

Jobs are started by htcondor, as a docker job. HTCondor itself has code to invoke the docker-run command to start the job. The user can specify the memory and
number of cores requirements inside the htcondor job submission file. HTCondor will make sure the memory limit is passed to docker using the appropriate option,
which in turn docker uses to set a cgroup limit. (docker sets the RAM limit as supplied, and the RAM+swap limit to be twice that). HTCondor also instructs docker to
set some other cgroup parameters such as cpu shares, which limit the priority of the job tasks with respect to other processes on the system. These cpu shares can
not be set by the user directly, but are based on the number of job slots (i.e. cores) that the user declares are needed by the job. HTCondor also accounts for the
total number of such slots it has running, and it will stop starting new jobs once all available slots are occupied.

In addition to the cgroup setup that htcondor instructs docker to do, the cerncondor configuration was also adapted to put all the docker jobs within a sub-cgroup,
with some master settings on the upper level cgroup. This was a way to limit things separately of what htcondor requests, or what docker would set. The additional
limits added are: the total memory limits, in terms of RAM and also RAM+swap. Also the number of processes which can se started is limited, (“pids.max” and is
8000). The cgroup which can control per block device IO scheduling is also set, so that priority for the jobs is less than other tasks on the system. (blkio.weight is set
to 50).

The cerncondor module was also adapted to support setting cpusets via cgroups, and also network traffic limits with iptables on the docker virtual devices. However
these two possibilities are not currently used.

31

https://gitlab.cern.ch/ai/it-puppet-module-cerncondor/tree/beerlite/code
https://gitlab.cern.ch/ai/it-puppet-hostgroup-eos/commit/2a237b3806eaad608ff8bc6616b114ffb57b6273

What could be gained for CERN?
precision at best 10 – 20 %, but based on conservative assumptions

 Worst case:
 40% can be used:

• Our measurements show that this is far less than what
can be done when the node is fully saturated

 780 * 32 * 0.4 = 9984 cores ~ 99.840 HEP-SPEC06

 312 Computing boxes

 Based on average load:
 >80% can be used: 780 * 32 * 0.8 =19968 cores ~

199.680 HEP-SPEC06

 624 computing boxes

32

