

CMS Evaluation of Rucio

Brian Bockelman, Diego Ciangottini, Bo Jayatilaka, Natalia Ratnikova, Andrea Sartirana, Eric Vaandering

CMS Data Management Needs

- Current statistics on our data storage and movement
 - Stored on tape O(100 PB)
 - Stored on disk O(50 PB)
 - Production file size O(1 GB), user file size O(100 MB)
 - Per day transfers ~1 PB, 1 M files (combined user, production)
 - 8 sites with tape, O(50-100) with managed disk
- Currently CMS has two DM systems
 - Production data is fully managed
 - Some user data is "lightly managed" (catalogued when produced, not able to be moved)
 - Some user data is completely unmanaged
- Numbers stay more or less constant for next 7-8 years, go up 50x in 2026 and beyond

Current CMS Data Management Situation

- CMS data stored in a three tiered structure:
 - Files target size 4 GB
 - Blocks usually about 100 files, designed to be a unit that can be stored and transferred at one site
 - Dataset some number of blocks, has a physics meaning (often stored all at a site, but no necessarily)
 - All 1:many maps, not many:many (unlike rucio)
- Primary data management is done by PhEDEx
 - Each site typically hosts a PhEDEx agent to manage its own data. Also manages local tape
 - Maintains a database of the desired states (blocks at sites) and issues FTS commands to achieve it
 - FTS is only one option for moving data, but ~all disk to disk is done with it
- A higher layer, Dynamo, monitors popularity of data and, based on rules, makes subscriptions to dynamically distribute popular data, cleanup unpopular
- DBS (Data Bookkeeping Service) is our meta-data catalog.
 - Shares the same description of Files (including size & checksum), Blocks, Datasets with PhEDEx
 - Also stores physics metadata on the file, block, dataset level

Current CMS User Data Management

- User data is in DBS only, PhEDEx and Dynamo have nothing to do with it
- Produced at Site A, moved to Site B (user has a relationship with Site B)
 - User typically has 2 TB of storage at Site B as part of site pledge to CMS
- All done with AsyncStageOut (ASO) which is a thin layer on top of FTS
 - Considering removing even this thin layer
- Can never be moved to Site C and have that reflected in DBS
 - I've kind of lied, we have an infrequently used process to turn user data into official data
- CMS has largely given up the idea of storage for physics groups
- Some choices driven by tools, may re-evaluate if we adopt Rucio

CMS Review Process

- Two data management reviews in the last two years
- PhEDEx is aging and we realize its lifetime is limited
 - Now on third generation of developers
 - Overly complex in functionality and operations (effort needed at every Tier2 site)
 - Written in perl and some dependencies are now abandoned
 - Re-tuning as network capabilities increase is necessary
- No confidence PhEDEx can survive in the HL-LHC era
 - We have agreed we need to replace PhEDEx by the end of LS2 (before Run3)
- Currently exploring two alternatives:
 - In house extension of Dynamo to handle transfers and eventually the catalog
 - Evaluation of Rucio rest of this talk
- Parallel and related effort by FNAL for current and future experiments

CMS Rucio Evaluation

- November 2017: Agreed to do a Rucio evaluation for CMS mostly with Fermilab effort
- Targeted towards July 2018 reviews of possible solutions, plan to pick one shortly thereafter
- A few people part time
- Spent some time familiarizing ourselves with subtle differences between ATLAS and CMS models
- Currently using a server graciously provided by U Chicago
 - Working part time on setting up our own to familiarize

Evaluation continued

- Remember CMS has Dataset Block File
 - Not perfect but fits OK into Rucio model:
 - ★ CMS Dataset Rucio Container
 - ★ CMS Block Rucio Dataset
- Also some differences in terms of how storage elements are thought of
- Everyone has also had to get familiar with the rucio CLI tools and concepts
- Progress has been reasonable
- Recently achieved milestones:
 - Set up two r/o RSEs that are populated with CMS data at existing sites, about a dozen test r/w RSEs
 - ★ Total system size: ~25 RSEs, 3.7 PB tracked, approaching 1 PB transferred
 - Small dataset transfers and distribution using rules (small scale test)
 - Transfer of 600 TB underlying event sample to NERSC HPC site
 - Exercised deletions on rule expiry
 - Initial investigations replacing ASO (user data) with rucio scopes
- Still to do:
 - Tape staging
 - Larger multi-site scale test

Transferring 600 TB dataset

Volume Statistics

Interaction with developers

- So far our interactions have been extremely positive. Almost all differences between CMS and ATLAS models have been addressed with new development
 - Lots of time spent by both groups understand each other's models
- Recall that CMS has O(200 PB) of existing data. Any transition needs to work with CMS data as
 is, not physically copying into new system with new names
- We now have submitted multiple pull requests to Rucio and had them accepted quickly
 - Special characters in CMS datasets: / and # (special in REST interface)
 - Fine grained control over physical and logical file names
 - CMS does not use space tokens
- Still to come
 - WebUI
 - Model for operations, including debugging
 - Model for interfacing popularity-generated rules
 - LFN to PFN mapping function that replicates the real situation
 - ★ Some sites are simple, some complex
 - CMS gave up on "scopes" sometime back (e.g. physics groups no longer manage their own data).
 - ★ Not a problem, use a single scope and only use others for limited purposes

Conclusions

- Rucio meets CMS's immediate scalability needs and is a good enough fit to our existing data model
- Rucio developers have been very accommodating and encouraging
 - It is a concern for CMS if the effort continues to be owned by ATLAS
 - Community project would be ideal
- U Chicago system has been instrumental in helping with a quick start
- We still have some milestones to meet to show that CMS should adopt Rucio, but we are all optimistic they can be met before the summer review
 - We now know we could adopt rucio
 - Transition would take place during 2019-2020 LHC shutdown
 - Still need to map out exactly how this would happen
 - ★ Need to explore how to run both in parallel