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Introduction

Current Design :
I DA is used to specify field quality of magnets
I Collimation system assumes minimum beam lifetimes
I No link established between DA and beam lifetime

Obstacles :
I DA for a fixed number of turns not the whole picture
I Number of trackable turns based on available CPU-power,

relevant timescales still beyond reach
I Even if CPU-power would be enough : special techniques

required to keep num. errors under control (see celestial
mechanics)
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Introduction

I Reliable interpolation models for DA vs time available
→ Can try extrapolation to relevant timescales !

I Proven models for scaling laws of losses with DA available
→ We can try and close the loop !

I Allows to define minimum DA in terms of beam loss
permitted by collimators
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Introduction
Approach

I Use LHC as test bed for HL-LHC
I Numerical simulations
I Experimental tests

I We started with injection (see this talk) and then we will
move to top energy

Parallel studies
I DA measurements in LHC injection (started in 2012 until

now, in collaboration with Ewen)
I DA measurements in LHC at top energy (started in 2017, in

collaboration with Ewen)
I Use scaling laws for simple analytical models of intensity

change in collision burn-off and DA, only (started in 2012, in
collaboration with Frederik)
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Derivation of beam loss from DA
Ultimate Goal :

I Derivation of beam loss from SixTrack DA simulations

Required input :
I Dynamic aperture D at turn τ (for now, assume it was known)
I Probability density function ρ(r) for modeling the transverse

beam distribution
Result :

I Beam loss L given as

L(D(τ)) =
∫ ∞

D(τ)
ρ(r) dr

I What is a realistic distribution ρ(r) ?
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Selection of the PDF

In principle, many different PDFs available
I Gaussian
I Lévy-Student (Pearson type VII)
I Double Gaussian
...

We need information from the machine
I The tail matters for calculating L(D)
I Measurements of the tail population carried out in 2011A)

I Between 1.9% and 3.6% of the beam intensity beyond 4σ
I Which distribution is compatible with this tail content ?

A) : F. Burkhart, Beam Loss and Beam Shape at the LHC Collimators,
CERN-THESIS-2012-046
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Possible PDFs

I Define a tail content function T :

T = 2
∫ ∞
4σ

ρ(x)dx (1)

I Goal : Find a distribution with 1.9% < T < 3.6%

I Gaussian : T is fixed to 5× 10−3%
I Levy-Student : T depends on parameters but Tmax = 0.6%
I Double Gaussian ?
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Double Gaussian Distribution
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Double Gaussian Distribution

I Mathematical formulation (centered at origin of the scale)

ρ(r) = A1
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√
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2
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with σ1 < σ2
I Define the tail content as a function of the dominating

Gaussian (assuming that σ1 ≈ σ)

T = 2
∫ ∞
4σ1

ρ(r) dr
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Double Gaussian Distribution
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Double Gaussian Distribution
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Translating DA into beam loss

I Set of double Gaussian distributions {ρ(r)}σ1,σ2,A1

I For a given DA the set of possible losses can be calculated

L(D|σ1, σ2,A1) =
∫ ∞

D
ρ(r |σ1, σ2,A1)dr

= A1
2 Erfc

[ D√
2σ1

]
+ 1− A1

2 Erfc
[ D√

2σ2

]
with

Erfc(x) = 2√
π

∫ ∞
x

e−t2 dt (2)
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Translating DA into beam loss
I Set of double Gaussian distributions {ρ(r)}σ1,σ2,A1

I For a given DA the set of possible losses can be calculated

L(D|σ1, σ2,A1) =
∫ ∞

D
ρ(r |σ1, σ2,A1)dr (3)

I Example : consider D = 5σ and 8σ
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Application to dynamic aperture simulations

I DA is a function of turn and different for all seeds
I Simulations limited to 100000 turns, not applicable to large

time scales
I Use interpolation model to derive DA after 10-50 minutes
I Result : distribution of DA values depending on seed
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Extrapolation of the DA to macroscopic time scales
Example : LHC at injection with Q′ = 12 and Ioct = 0 A
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Extrapolation of the DA to macroscopic time scales
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Extrapolation of the DA to macroscopic time scales

I Distr. and DA model can be combined to derive beam loss
I Loss function becomes parametric in Double Gaussian and

fitting parameters

L = L(τ |σ1, σ2,A1,D∞, b, κ)

I Can also include uncertainty from the fitting ∆D∞, ∆b

L = L(τ |σ1, σ2,A1,D∞, b, κ,∆D∞,∆b)

I Assume Gaussian distribution of fit parameters with standard
deviation ∆D∞ etc. around the central value
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Loss distribution for different times after injection
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Application to LHC

I Study case : LHC at injection energy with 11 different
chromaticities and octupole currents

I Calculate extrapolated DA, loss distribution
I Calculate emittance growth from DA (assuming Gaussian) :

∆ε
ε

(D) = D2 exp
(
−D2/2

)
2 (1− exp (−D2/2)) (4)

I LHC 2016 optics assuming ε = 2.5µm
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Simulation Results
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Extrapolated DA from SixTrack simulations
Injection, ε = 2.5µm, distribution over seeds

4 12 20 28 36
Octupole current [A]

4

6

8

10

12

14

Ex
tra

po
la

te
d 

DA
 a

fte
r 3

0 
m

in
 [

]

4 12 20 28 36
Octupole current [A]

4

6

8

10

12

14
Beam 1 Beam 2

Q′ = 2

Q′ = 20

P. D. Hermes et al., LHC and HL-LHC DA studies with field errors at injection for proposing DA targets 24/37



Extrapolated DA from SixTrack simulations
Injection, ε = 2.5µm, distribution over seeds
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Calculation of the expected beam loss

Time

Be
am

 In
te

ns
ity
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I Final intensity If given by injected bunch intensity ∆i and the
time difference Tf − Ti :

If =
N∑

i=1
∆Ii (1− L(Tf − Ti ))

I Our model predicts L(Tf − Ti ) based on a DA simulation !
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Measured and Simulated Beam Loss

I Analyze all proton fills for physics in 2016

I Compare beam intensity at beginning of PREPARE RAMP
with sum of injected bunch intensity

I Baseline : All simulations with Ioct = 40A and 16 ≤ Q′ ≤ 20
I Consider ten realizations of each set (D∞, b, κ) from fit errors
→ 600 extrapolated DA values (with 60 seeds)

I Take into account all Double Gaussians from our model
(around 4700)

I Ignore fills with more than 5% loss (mostly dumps)
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Measured and Simulated Beam Loss
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Measured and Simulated Beam Loss
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Measured and Simulated Beam Loss

I Simulations made with emittance 2.5µm, in reality 2.2µm
I Can we improve the agreement by applying the correct

emittance ?
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Measured and Simulated Beam Loss
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Measured and Simulated Beam Loss

0.0 0.5 1.0 1.5 2.0 2.50.0

0.5

1.0

1.5

Co
un

ts
 [a

.u
.]

Measured
Simulated

0.0 0.5 1.0 1.5 2.0 2.5
Beam Loss until PREPARE RAMP [%]

0.0

0.5

1.0

1.5

2.0

2.5

Co
un

ts
 [a

.u
.]

Measured
Simulated

Beam 2 Meas. Sim.
Mean 0.36 0.35
σ 0.38 0.21

Median 0.21 0.33

Beam 1 Meas. Sim.
Mean 0.69 0.6
σ 0.49 0.3

Median 0.54 0.59

ε = 2.2µm

Figure – Figure caption
P. D. Hermes et al., LHC and HL-LHC DA studies with field errors at injection for proposing DA targets 30/37



Application to HL-LHC

I HL-LHC at injection energy assuming ε = 2.5µm
I Scan over chromaticity and octupole current, nominal tune
I Tune scans

I With Q′ = 20 and Ioct = 40A
I With Q′ = 3 and Ioct = 0A
I With Q′ = 20 and Ioct = −40A
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HL-LHC Estimated DA and beam loss after 30 minutes
Scan over chromaticity and octupole current
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HL-LHC Estimated DA and emittance growth
Scan over chromaticity and octupole current
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HL-LHC Estimated DA and beam loss after 30 minutes
Tune scan with Q′ = 20 and Ioct = 40 A
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HL-LHC Estimated DA and emittance growth
Tune scan with Q′ = 20 and Ioct = 40 A
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Outlook

I Comparison to measurement : calculate beam loss using the
individual (measured) bunch emittance

I Simulations : Extension of parameter space
I HL-LHC tune scan with

I Q′ = 3 and Ioct = 0A
I Q′ = 20 and Ioct = −40A

I LHC : new simulation set with ATS optics and validation
I HL-LHC : use simulations to derive beam loss rates and

compare to DR specifications
I Possibly re-measure the transverse beam distribution and

re-calibrate model
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Summary

I Model for beam loss from DA based on double Gaussian
I Model for extrapolating DA vs. turn to macroscopic timescales
I Allow deriving beam loss from DA from simulations
I Application to LHC and comparison with measured beam loss
I Good agreement when using the correct emittance
I Application to HL-LHC parameter scans : prediction of beam

loss to be compared with design specifications
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