

Update on correlation between DA and Lifetime with Beam-Beam

Y. Papaphilippou and D. Pellegrini with contributions of: F. Antoniou, S. Fartoukh, G. Iadarola, N. Karastathis, G. Sterbini

HI-LUMI WP2 – 07/11/2017

A foreword on DA

- The DA obtained from tracking simulations depends on several conventions:
 - Number of turns: 1M = 90 s of beam time
 - Choice of initial momentum: 27e-5 ~ ³/₄ of the bucket height (see also D. Pellegrini, 81st WP2)
 - Number of angles for min DA: 5
 - Specific machine realisation (typically without errors)
 - LHCb normally in the good polarity, levelled by separation at 2e32 Hz/cm²
- We use them as a reference for the DA vs lifetime comparison (i.e. different considerations can lead to different DA vs lifetime correlation).

Experience from 2016

Recap from 93rd WP2

Losses during the fill

• Normalised loss-rate, approaches burn-off limit within first **2-3h**.

These early losses appear to be correlated with DA.

1st hour losses along the year

Averaged over the first 1.0h

DA follow up along 2016 Run

 Reduction of emittance, increasing the DA from 5 to 6 σ Reduction of crossing angle, reducing the DA from 6 to 5 σ Tune adjustment
bringing restoring the
DA from 5 to 6 σ

What is the impact on the integrated luminosity?

Luminosity loss

The integrated **luminosity loss** along the fills from:

 emittance blow-up (compared to the expected evolution), extending for the entire fill duration.

 beam losses localised in the first few hours.

The contribution of losses is up to **2~3 %**, while the crossing reduction came with a **10 %** increase.

Trading DA for performances can be worth the losses.

Improvements in 2017

Crossing angle anti-leveling: a test for DA

LHC 2017; 8b4e₁; β^* =30 cm; (Q_x, Q_y)=(62.314, 61.320) I_{MO}=330 A; Q'=15; ε=2.5 µm; Min DA.

 Each intensity allows for a specific crossing angle in terms of DA
Steps for crossing angle reduction based on DA simulations

 Steps translated into time for OP...

Crossing angle anti-leveling: a test for DA

LHC 2017; 8b4e₁; β^* =30 cm; (Q_x, Q_y)=(62.314, 61.320) I_{MO}=330 A; Q'=15; ε=2.5 µm; Min DA.

ERI

 Reduction steps not always applied at the right intensity
Sometimes resulting in aggressive settings

Crossing angle anti-leveling: a test for DA

- Lifetime approaches the burnoff limit very quickly.
- Aggressive settings are seen on the beam lifetime and cross section.

Fill 6061: Continuous variation of crossing angle

- Smooth losses without large dips
- Proposed for HL-LHC

D. Pellegrini, HI-LUMI WP2 12

A word on performance

- Perform integration with:
 - Measured (fill 6054) cross section and realistic crossing angle steps,
 - Cross section fitted on the first 2h and fixed crossing angle.
 - Aggressive crossing steps, still ~3% gain of integrated luminosity.

13

Putting all together

- Feed all the machine settings and beam measurements to DA simulations and benchmark with lifetime.
- MD2209 (G. ladarola, D. Pellegrini et al.) Crossing angle with high intensity 8b4e bunches chosen:
 - Reduction of the crossing angle in steps;
 - Very good tune and lumi control along the fill;
 - Attempt to recover lifetime at the smallest crossing by reducing octupoles and chroma.

LHC MD 2209 - Crossing angle with high intensity 8b4e

LHC MD 2209 - Crossing angle with high intensity 8b4e

16

LHC MD 2209 - Crossing angle with high intensity 8b4e

LHC MD 2209 - Crossing angle with high intensity 8b4e

18

LHC MD 2209 - Crossing angle with high intensity 8b4e

Conclusions

- Flexible crossing angle operation **extremely useful**, also in MDs!
- First-of-the-kind exercise of **feeding** of both beam and machine parameters along the fill to DA simulations.
- Remarkable agreement between the steps in burnoff-corrected lifetime and DA.
- DA can be affected by **systematics**.
- Cannot reproduce the raise of lifetime after aggressive steps or when relaxing the crossing angle:
 - Intensity and emittance variations are not enough to explain.

Outlook

- Move to lifetime simulations, taking into account the particles already lost in the previous tracking intervals to understand the quick gain of lifetime after the perturbations.
- Extend the analysis to additional fills to improve the statistics.
- Possibly identify more lifetime-affecting settings in order to improve the general understanding.
- Initiate beam 2 simulations with beam-beam.

Backup

D. Pellegrini, HI-LUMI WP2