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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 
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…the Higgs boson?



What this is not

A replacement for a 
great online tutorial 

or a UC course

(STAT 24400-24500)
CMSC 25025/STAT 37601
CMSC 25400/STAT 27725

TTIC 31020 (see Toyota Institute)
TTIC 31230/CMSC 35300

STAT 24610
…

ttp://www.ttic.edu/courses/


What is Machine 
Learning?



What is Machine 
Learning?

Answer: just about 
everything we do!

…algorithms for identifying 
and analyzing structure in data



What can we use machine learning for?

Supervised learning

Unsupervised learning

Classification

Regression

Generation

Clustering

Anomaly detection

the machine is 
presented examples of 
multiple classes and 
learns to differentiate

the machine is 
presented data and 
asked to give you 
multiple classes
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Classification

Goal: Given a feature vector, return an integer 
indexed by the set of possible classes.

In most cases, we care about binary classification in which 
there are only two classes (signal versus background)

There are some cases where we care 
about multi-class classification

Feature vector 
can be many-
dimensional

Harder =  more 
overlap between 

for S and B



Classification

Goal: Given a feature vector, return an integer 
indexed by the set of possible classes.

In practice, we don’t just want one classifier, 
but an entire set of classifiers indexed by:

True Positive Rate = signal efficiency = 
Pr(label signal | signal) = sensitivity 

True Negative Rate = 1 - background efficiency =  
rejection = Pr(label background | background) = specificity 

For a given TPR, we want the lowest possible TNR!
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binary classification in 1D 
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abundance

You may be 
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Let’s consider an important special case: 
binary classification in 1D 
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Is the simple 
threshold cut optimal?

In this simple case, the log 
LL is proportional to x:  

no need for non-linearities!
Threshold cut is optimal
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What if the distribution of x is complicated?
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Now what is the 
optimal classifier?

Real life is complicated!
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In this case, LL is highly non-linear 
(non-monotonic) function of x

A threshold on x 
would be sub-optimal
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ROC is worse than the Gaussians, 
but that is expected since the 
overlap in their PDFs is higher.



Why don’t we always just 
compute the optimal classifier?

In the last slides, we had to estimate the 
likelihood ratio - this required binning the PDF

binning works very well in 1D, but becomes 
quickly intractable as the feature vector 

dimension >> 1 (“curse of dimensionality”)

machine learning for classification is simply 
the art of estimating the likelihood ratio 

with limited training examples



Tools for Classification
=tools for likelihood ratio estimation

• “Histograming”  
• Nearest Neighbors 
• Support Vector Machines (SVM) 
• (Boosted) Decision Trees 
• (Deep) Neural Networks 
• …

Software: TMVA, scikit-learn, keras, …

Data formats: .root, .npy, .hdf5 

does “everything” exempt DNNs

has most things and ROOT-compatible but the 
community base is much smaller than the other ones

python interface 
 to DNN tools 
TensorFlow, 

Theano, CNTK

Not widely used; only 
useful if decision 

boundary is ‘simple’



Histograming

Full Likelihood (Jet Mass+Jet Charge+b-tagging)
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If you have a 1D 
problem, look no further!

If your problem can be 
decomposed into a 
product/sum of 1D 

problems…look no further!

If these do not apply…
look elsewhere.



Nearest Neighbors
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In 2D, a nice extension of histogramming is to estimate the 
likelihood ratio based on the number of S and B points nearby.

ATLAS-CONF-2014-018



BDT response
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Boosted Decision Trees (BDTs) ATLAS-CONF-2017-037

We love 
BDTs.

If 3 < dim(feature 
vector) < O(100) 

this is probably 
right for you!



Boosted Decision Trees (BDTs)
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We love BDTs because they are fast to train 
and do not have very many parameters.  

They are also rather robust to overtraining.
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We love BDTs because they are fast to train 
and do not have very many parameters.  

They are also rather robust to overtraining.overtraining.

Unless you have a lot of 
training data, it is better to use 
cross-validation instead of a 
single hold-out for evaluating 
out-of-sample performance.



Boosted Decision Trees (BDTs)
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There is really not a good reason to use a 
DNN with << O(100) dimensions.  

However, they 
are becoming 
increasingly 

easy to train …



Modern Deep NN’s for Classification

Neural Network: composition of functions f(Ax+b) for inputs 
x (features) matrix A (weights), bias b, non-linearity f.

N.B. I’m not mentioning biology - there may be a vague resemblance 
to parts of the brain, but that is not what modern NN’s are about.

x1

x2

xn

h11

h12

h1m1

Ax+b f hN1

hN2

hNmN

[0,1]

background

signal

depth

Fact: NN’s can approximate “any” function.  



Choosing the non-linearity (activation function) f

Logistic (aka Sigmoid): one of the 
most widely-used functions in the past, 
no basically only used for the last layer.

tanh: similar story to sigmoid.

generalization to multi-
dimensional input: softmax

f(~x) = e

xi
/

P
i

e

xi



Choosing the non-linearity (activation function) f

Rectified Linear Unit ReLU: one of the 
most widely-used functions now.

Leaky ReLU / Exponential LU (ELU): 
variations on the ReLU that are popular.

do not suffer from the 
vanishing gradient problem



Functions that act on multiple nodes in one layer

MaxOut: Take the maximum of multiple inputs

DropOut: Randomly remove (for one 
forward/backward pass) nodes from a layer.

reduces the dimensionality 
of a hidden layer

helps with over-training



(D)NN Training

Training proceeds by minimizing a loss function.

Typical loss functions

Squared error:

Cross-entropy:

(yi � ŷi)2

�yi log(ŷi)� (1� yi) log(1� ŷi)

True label (0 or 1)
NN output



(D)NN Training

Objective function is minimized using stochastic gradient 
decent (almost exclusively with the Adam algorithm)

Stochastic gradient decent: Using single (or multiple 
“mini-batches”) examples, weights are updated:

N.B. a NN can do better than random before any training!  
For instance, if you initialize all the weights to 1 and the signal 

has generally higher values then the NN will beat random.

learning rate

Aij 7! Aij � ⌘rijL

back-propagation: weights 
updated backwards and 
gradients are recycled.



(D)NN Training

Training proceeds multiple times 
(epochs), reshuffling the data.

Early stopping: stop at the 
epoch where the validation 

error starts to increase validation

train



In the tutorials today, you will get a chance 
to apply these concepts in practice.

Before closing, I’ll leave you with one last 
concept: semi-supervised learning.

unsupervised supervisedsemi-supervised

how much you know about per-example labels

nothing everythinge.g. class proportions
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What if data and simulation are very different?
…your classifier will be sub-optimal

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

Eur. Phys. J. C (2014) 74: 3023
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Figure 3: This figure shows the W-jet image di↵erences
between the default PYTHIA shower and the alternate VINCIA

shower in PYTHIA (top left), the default SHERPA shower (top
right), the default HERWIG angular shower (bottom left) and
the HERWIG dipole shower (bottom right). The plots have been
individually normalised.

To gain an understanding of the systematic uncer-
tainties in using networks trained on simulated data,
we study the behaviour of networks across a variety of
di↵erent generators and parton showers which all provide
an adequate description of current LHC data. We assume
that given a number of di↵erent ROC curves derived from
di↵erent generators and parton showers, the envelope of
these curves provides an approximate uncertainty band
associated with training the network on simulated, rather
than real, data.

Recently, Ref. [48] has studied parton shower uncer-
tainties in HERWIG 7. They divide the uncertainties into
a number of classes: numerical, parametric, algorithmic,
perturbative and phenomenological. Numerical uncer-
tainties can be decreased by increasing the number of
events, while parametric uncertainties are those external
to the MC generator: masses, couplings, PDFs and
so forth. The focus of our work in this section is on
algorithmic uncertainties, those due to di↵erent choices
of parton shower algorithm. The authors of Ref. [48]
focus on perturbative and phenomenological uncertain-
ties, which are from truncation of expansion series and
parameters deriving from non-perturbative models. Our
work is more in the spirit of the ‘Towards parton shower
variations’ contribution to the 2015 SM Les Houches
Proceedings [49]. Previous studies also exist within the
HERWIG framework on the implications of MC uncer-
tainties on jet substructure in the context of Higgs
searches [50].

We generate background and signal events with

three of the most widely used MC generators:
PYTHIA 8.219 [41], SHERPA 2.0 [51, 52] and HERWIG 7.0 [53,
54]. For PYTHIA 8 we study both the default shower
and the VINCIA shower [55, 56], and for HERWIG we
include both the default (angular ordered) and dipole
showers [57, 58], giving us five di↵erent parton shower
models to study.
The default HERWIG shower (known as QTilde) is based

on 1 ! 2 splittings using the DGLAP equations, with
an angular ordering criterion [59]. The SHERPA shower is
based on a Catani-Seymour dipole formalism [60]. In this
case one particle of the dipole is the emitter which under-
goes the splitting, while the other is a spectator which
compensates for the recoil from the splitting and ensures
that all particles remain on their mass-shells throughout
the shower, leading to easier integration with matching
and merging techniques. The default shower in PYTHIA 8
is also a dipole style shower [61], ordered in transverse
momentum.
While parton showers have traditionally been based

upon partonic DGLAP splitting functions, another possi-
bility is to consider colour-connected parton pairs which
undergo 2 ! 3 branchings (note that this is distinct
from Catani-Seymour dipoles used in SHERPA, where one
parton is still an emitter, and the other recoils). In
these so-called antenna showers, the 2-parton antenna
is described with a single radiation kernel. This has the
advantage, for instance, of explicitly including both the
soft and collinear limits. We use the recently released
VINCIA [55, 56] plug-in for PYTHIA 8 as a representative
antenna shower.
These event generators also provide di↵erent treat-

ments of the soft radiation from the underlying event
which accompanies each hard partonic scattering. They
also possess di↵erent implementations of the parton-to-
hadron fragmentation process being based either around
cluster fragmentation ideas (HERWIG and SHERPA) or the
Lund string model (PYTHIA), giving us a wide range of
QCD-related e↵ects to probe. To incorporate detector
e↵ects such as smearing we pass all events through
the Delphes 3 detector simulator [42]. In the studies
presented here, our baseline shower is PYTHIA 8 with its
default settings.
We construct average jet images for all five di↵erent

generators and showers under investigation, and then
subtract the default PYTHIA average jet image in order
to see the di↵erences in the average radiation patterns.
The results are shown in Fig. 3 for the W-jet signal. We
have normalised the intensity di↵erences of the pixels so
that red indicates a region of excess and blue a deficit
relative to the PYTHIA default. While the VINCIA is
roughly similar to the PYTHIA default, the SHERPA and
HERWIG dipole showers exhibit more intense radiation in
the resolved subjets and a substantial deficit in the region
between the subjets. The HERWIG angular shower shows
the opposite, with less radiation in the subjet cores and
more di↵use radiatioon. QCD radiation exhibits similar
features.

DNN classifiers 
can exploit 

subtle features

subtle features are 
hard to model !

we need to be 
careful about which 

models we use - 
only data is correctN.B. not all of these have been tuned to the same data

Boosted W boson jets

We will take about image feature vectors later today
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Solution: Train directly on 
data using mixed samples

E. Metodiev, BPN, J. Thaler,1708.02949
related ideas: L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
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, since
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)/(f
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+ 1)2 > 0. If f
1
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2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Training on data: 
 learning when you know (basically) nothing

E. Metodiev, BPN, J. Thaler,1708.02949
related ideas: L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145

optimal classifier 
for M1 versus M2

optimal classifier 
for S versus B
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
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and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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, since
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+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Solution: Train directly on 
data using mixed samples

Training on data: 
 learning when you know (basically) nothing
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The future

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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We must be cautious to apply 
the right tool for the right job.  

The more you know, the less 
black the boxes will be…

(D)NN’s are powerful tools that will 
help us fully exploit the physics 
potential of our experiments.


