Introduction to Machine Learning for Physics

Benjamin Nachman

Lawrence Berkeley National Laboratory

EFI Data Analytics Workshop October 26, 2017

What this is not

.

p,

What this is not

...the Higgs boson?

p,

What this is not

A replacement for a great online tutorial or a UC course

(STAT 24400-24500) CMSC 25025/STAT 37601 CMSC 25400/STAT 27725 TTIC 31020 (see <u>Toyota Institute</u>) TTIC 31230/CMSC 35300 STAT 24610

What is Machine Learning?

p,

Run: 302347 Event: 753275626 2016-06-18 18:41:48 CEST

What is Machine Learning?

Answer: just about everything we do!

...algorithms for identifying and analyzing structure in data

Supervised learning

Classification

Regression

Generation

the machine is presented examples of multiple classes and learns to differentiate

Unsupervised learning

Clustering

Anomaly detection

the machine is presented data and asked to give you multiple classes

Supervised learning

Classification

Regression Generation

Unsupervised learning

Clustering

Anomaly detection

Higgs boson or gluon?

multiple classes

Supervised learning

Classification

Regression

Generation

Unsupervised learning

Clustering

Anomaly detection

What is the energy of this spray of particles (jet)?

What are the momenta of these charged particles?

Supervised learning

Classification

Regression

Generation

Unsupervised learning

Clustering

Anomaly detection

multiple classes

What would Higgs boson events look like with a different mass?

Supervised learning

Classification

Regression

Generation

Unsupervised learning

Clustering

Anomaly detection

Classification

Goal: Given a *feature vector*, return an integer indexed by the set of possible *classes*.

In most cases, we care about *binary* classification in which there are only two classes (signal versus background)

There are some cases where we care about *multi-class classification*

Feature vector can be manydimensional

Classification

Goal: Given a *feature vector*, return an integer indexed by the set of possible *classes*.

In practice, we don't just want one classifier, but an entire set of classifiers indexed by:

True Positive Rate = signal efficiency = Pr(label signal | signal) = sensitivity

True Negative Rate = 1 - background efficiency = rejection = Pr(label background | background) = specificity

For a given TPR, we want the lowest possible TNR!

Input feature x

Input feature x

Input feature x

Input feature x

Threshold cut is optimal

Input feature x

Pr(label signal | signal)

What if the distribution of x is complicated? Real life is complicated!

Input feature x

Input feature x

ROC is worse than the Gaussians, but that is expected since the overlap in their PDFs is higher.

Pr(label signal | signal)

Input feature x

Why don't we always just compute the optimal classifier?

In the last slides, we had to estimate the likelihood ratio - this required binning the PDF

binning works very well in 1D, but becomes
quickly intractable as the feature vector
dimension >> 1 ("curse of dimensionality")

machine learning for classification is simply the art of estimating the likelihood ratio with limited training examples

Tools for Classification

=tools for likelihood ratio estimation

• "Histograming"

. . .

- Nearest Neighbors
- Support Vector Machines (SVM)
- (Boosted) Decision Trees
- (Deep) Neural Networks

Not widely used; only useful if decision boundary is 'simple'

has most things and ROOT-compatible but the community base is **much** smaller than the other ones Software: TMVA, scikit-learn, keras, ... does "everything" exempt DNNs does "everything" exempt DNNs TensorFlow, Theano, CNTK

Data formats: .root, .npy, .hdf5

Histograming

If you have a 1D problem, look no further!

If your problem can be decomposed into a product/sum of 1D problems...look no further!

If these do not apply... look elsewhere.

 $p(M, Q, B|V) = \sum_{\mathcal{F}} \Pr(\mathcal{F}|V) p(M|\mathcal{F}, V) p(Q|\mathcal{F}, V) \Pr(B|\mathcal{F}, V),$

Nearest Neighbors

In 2D, a nice extension of histogramming is to estimate the likelihood ratio based on the number of S and B points nearby.

BDT response

Boosted Decision Trees (BDTs)

We love BDTs because they are fast to train and do not have very many parameters. They are also rather robust to *overtraining*.

	ATL / √s=13T	4<i>S</i> Sí l eV, BD	mulat T W Ta	ion Pı _{gging,∈}	r elimi i ^{rel} =50%	nary %				ATLAS Simulation Preliminary √s=13TeV, BDT W Tagging,∈ ^{rel} =50%										
	W Jet,	$p_{T}^{truth} = [2$	200,200	0] GeV,	m ^{calo} >4	0 GeV,	hηl ^{truth} <2	2.0		W Jet, p _T ^{truth} =[200,2000] GeV, m ^{calo} >40 GeV, ηI ^{truth} <2.0										
	MinNoo	leSize:	1.0, nCu	its:20, E	Bagged	Samplel	Fraction:	0.5		MinNodeSize:1.0, nCuts:20, BaggedSampleFraction:0.5										_
100	9	13	20	35	86	135	331		pth nin	100	21.5	35.9	42.4	45.2	46.2	46.2	45.7		45	tion
50	9	14	22	35	78	117	307			50	 21.5	35.9	42.4	45.2	46.2	46.2	45.7	-	40	ject
20	 10	17	21	36	★ ₇₂	134	315	-		20	 21.5	36	42.7	45.3	★ _{46.2}	46.3	 45.9		35	e D
10	- 11	15	19	35	75	104	248		$300\frac{a}{10}$	10	24.2	35.6	41.2	43.8	45.3	45.8	 45.9		30	nno
7	- 11	13	19	29	55	85	203		2000 E	7	 23.2	34.3	37.8	40.8	43.4	44.3	45.1		25	cgro
5	_ 10	13	17	23	50	73	157	_	150 ဋ	5	 19.8	27.4	31.2	35.9	40.2	41.8	43.4		20	ack
Ũ	_								air	Ũ								_	15	
3	11	12	15	20	34	50	102	-	100 <u>은</u>	3	15.2	18.8	22.4	25.5	30.8	33.4	36.2		10	tive
2	11	13	13	16	26	38	85		50	2	13.3	15.3	17	18	23.1	24.9	26.4			ela
1	10	12	12	15	21	28	57		50	1	4.1	13.3	14	14.3	15.2	15.6	15.9		5 0	С
l	10	50	100	200	500	850	2000		•		10	50	100	200	500	850	2000		U	

NTrees

ATL-PHYS-PUB-2017-004

NTrees

Boosted Decision Trees (BDTs)

We love BDTs because they are fast to train and do not have very many parameters. They are also rather robust to *overtraining*.

epth

100

ATLAS Simulation Preliminary √s=13TeV, BDT *W* Tagging, ∈^{rel}_{sia}=50% W Jet, p_^{truth}=[200,2000] GeV, m^{calo}>40 GeV, hl^{truth}<2.0 MinNodeSize:1.0, nCuts:20, BaggedSampleFraction:0.5 300 月

eptr

100

Unless you have a lot of training data, it is better to use cross-validation instead of a single hold-out for evaluating out-of-sample performance.

135

.0, nCuts:20, BaggedSampleFraction:0.5 45 35.9 Ð 35 36 background 35.6 41.2 40.8 34.3 37.8 40.2 35.9 41.8 **Relative** 30.8 33.4 36.2 .2 18.8 22.4 15.3 18 23.1 24.9 26.4 17 13.3 14 200 500 50 100 850 2000

NTrees

ulation Preliminary

3DT W Tagging,∈^{rel}=50% =[200,2000] GeV, m^{calo}>40 GeV, ηl^{truth}<2.0

Boosted Decision Trees (BDTs)

There is really not a good reason to use a DNN with << O(100) dimensions.

Modern Deep NN's for Classification

Neural Network: composition of functions f(Ax+b) for inputs **x** (features) matrix **A** (weights), bias **b**, non-linearity **f**.

N.B. I'm not mentioning biology - there may be a vague resemblance to parts of the brain, but that is not what modern NN's are about.

Fact: NN's can approximate "any" function.

Choosing the non-linearity (activation function) f

Logistic (aka Sigmoid): one of the most widely-used functions in the past, no basically only used for the last layer.

generalization to multidimensional input: softmax

 $\mathbf{f}(\vec{x}) = e^{x_i} / \sum_i e^{x_i}$

tanh: similar story to sigmoid.

Choosing the non-linearity (activation function) f

Rectified Linear Unit **ReLU**: one of the most widely-used functions now.

do not suffer from the vanishing gradient problem

Leaky ReLU / Exponential LU (ELU): variations on the ReLU that are popular.

Functions that act on multiple nodes in one layer

MaxOut: Take the maximum of multiple inputs

reduces the dimensionality of a hidden layer

DropOut: Randomly remove (for one forward/backward pass) nodes from a layer.

helps with over-training

(D)NN Training

Training proceeds by minimizing a loss function.

Typical loss functions

Squared error:
$$(y_i - \hat{y}_i)^2$$

Cross-entropy: $-y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$
 \uparrow \bigwedge NN output
True label (0 or 1)

(D)NN Training

Objective function is minimized using stochastic gradient decent (almost exclusively with the Adam algorithm)

Stochastic gradient decent: Using single (or multiple "mini-batches") examples, weights are updated:

N.B. a NN can do better than random **before any training**! For instance, if you initialize all the weights to 1 and the signal has generally higher values then the NN will beat random. (D)NN Training

Training proceeds multiple times (epochs), reshuffling the data.

Early stopping: stop at the epoch where the validation error starts to increase

In the tutorials today, you will get a chance to apply these concepts in practice.

Before closing, I'll leave you with one last concept: semi-supervised learning.

how much you know about per-example labels

For supervised learning, we depend on labels labels usually come from simulation

What if data and simulation are very different? ...your classifier will be sub-optimal

Boosted W boson jets

N.B. not all of these have been tuned to the same data

J. Barnard et al. Phys. Rev. D 95, 014018 (2017)

> DNN classifiers can **exploit** subtle features

subtle features are hard to model !

we need to be careful about which models we use only data is correct

We will take about image feature vectors later today

What if data and simulation are very different?

.... YOUR CLASSIFIER WILL be SUD E. Metodiev, BPN, J. Thaler, 1708.02949 related ideas: L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145

What if data and simulation are very different? ...your classifier will be sub-E-Metodiev, BPN, J. Thaler, 1708.02949 related ideas: L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145

Training on data: learning when you know (basically) nothing For supervised learning, we depend on labels

.... YOUR CLASSIFIER WILL be SUD-E-Metodiev, BPN, J. Thaler, 1708.02949 related ideas: L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145

The future

(D)NN's are powerful tools that will help us fully exploit the physics potential of our experiments.

We must be cautious to apply the right tool for the right job. The more you know, the less black the boxes will be...