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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Lawrence Berkeley 
National Laboratory

Benjamin Nachman

EFI Data Analytics Workshop 
October 26, 2017



Disclaimer: I’m not going to talk about: 

- deep learning “simply” replacing shallow learning 
- interesting work from the large neutrino experiments 

- non-image based classification at the LHC 

Instead, I’ll use hadronic final states at the LHC to 
illustrate DNN classification, regression, & generation

a lot of the content still applies

30SEMANTIC SEGMENTATION

νe
proton

e-

ADC Image Network Output

MicroBooNE 
Data CC1π0

MicroBooNE 
Data CC1π0

30

Promising early 
results in simulation 
and data samples 

from T. Wongjirad’s DPF talk

https://indico.fnal.gov/contributionDisplay.py?contribId=411&confId=11999


Hadronic final states at the LHC
Center-of-mass energy = 13 TeV
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One of the critical goals of 
the LHC is to identify new, 

massive particles

Hadronic final states at the LHC
Center-of-mass energy = 13 TeV
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The decay of the 
new particles often 

result in jets

N.B. jets are defined by 
unsupervised learning!

Hadronic final states at the LHC
Center-of-mass energy = 13 TeV

One of the critical goals of 
the LHC is to identify new, 

massive particles



We have observed Standard Model 
particles decaying into two jets

The invariant mass of these 
two jets is ~80 GeV/c2



We have observed Standard Model 
particles decaying into two jets

The invariant mass of these 
two jets is ~80 GeV/c2



m/2

g = E/m
f ~ 1/g = m/E m

What if you take one of those SM dijet 
resonances and Lorentz boost it?



W bosons are naturally boosted if they result 
from the decay of something even heavier

?

W

WW



W bosons are naturally boosted if they result 
from the decay of something even heavier

?

W

WW

Goal: Find W jets in 
an enormous sea of 

generic q/g jets  

These jets have a 
non-trivial structure!



p p

Searching for new particles 
decaying into boosted W 

bosons requires looking at the 
radiation pattern inside jets

momentum transverse 
to the beam (pT)



p p

like a digital image!

Up next: jet images
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the Jet Image
J. Cogan et al. JHEP 02 (2015) 118

L. de Oliveira, M. Paganini, BPN, Comp. and Software for Big Science (2017) 1
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Boosted W

the Jet Image
J. Cogan et al. JHEP 02 (2015) 118

Credit: Peter G Trimming (Wikipedia)

no smooth edges, clear features, low 
occupancy (number of hit pixels)

L. de Oliveira, M. Paganini, BPN, Comp. and Software for Big Science (2017) 1

https://commons.wikimedia.org/wiki/File:Baby_Squirrel,_seen_at_Forest_How.jpg
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there is information encoded in the 
physical distance between pixels

g ⇢ qq

W ⇢ qq

and we can benefit from the 
extensive image processing literature
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Can help to learn faster & smarter; but must be careful!

One of the first typical steps is pre-processing
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One of the most useful physics-
inspired features is the jet mass
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In both pictures, total intensity of 
Einstein’s face is about the same.  

However, his face’s image 
mass is quite different!

Photos from: http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein

bright
side

dark 
side uniform moderate 

intensity

Intuition via analogy why normalization can hurt

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein


In both pictures, total intensity of 
Einstein’s face is about the same.  

However, his face’s image 
mass is quite different!

Photos from: http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein

bright
side

dark 
side uniform moderate 

intensity

In standard computer 
vision, you likely don’t 
want to be sensitive to 
this! …not the case for 

jet images!

Intuition via analogy why normalization can hurt

http://mentalfloss.com/article/49222/11-unserious-photos-albert-einstein


ultimate classification is achieved with modern 
machine learning using all pixels as input!
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W boson?

single quark/
gluon?

Now, with a carefully processed image, we 
can ask: where did this jet come from?
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29Deep learning with jets

first 
review!

A. Larkoski, I. Moult, 
BPN, 1709.04464
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Typical ‘fully connected’ network:
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30(Deep) Neural Networks



Common tool for images is the 
convolutional NN (CNN)

The filter is like the A, only the dimensionality is now 
the filter size (<< n) and not the image size (n).
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Common tool for images is the 
convolutional NN (CNN)

The filter is like the A, only the dimensionality is now 
the filter size (<< n) and not the image size (n).

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 
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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 
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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Response 
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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(a) (11⇥ 11) convolutional kernels from first layer (b) Convolved Jet Image di↵erences

Figure 9: Convolutional Kernels (left), and convolved feature di↵erences in jet images (right)

We also draw attention to the fact that there is a large diversity in the the convolved representations,
indicating that the DNN is able to learn and pick up on multiple features that are descriptive.

A related way to visualize the information learned by various nodes in the network is to consider
the jet images which most activate a given node. Fig. 10 shows the average of the 500 jet images
with the highest node activation for the last hidden layer of the MaxOut network (the layer before
the classification layer). The first row of images in Fig. 10 show clear two-prong signal-like structure
whereas the second and third rows show one-prong di↵use radiation patterns that are more background-
like. The remaining rows have a variety of �R distances between subjets and have a mix of background
and signal-like features.
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with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel I
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i

and �

i

are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵

i

is the aforementioned random variable. Each ↵

i

is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

v

i+1

:= 0.9 · v
i

� 0.0005 · ✏ · w
i

� ✏ ·
⌧
@L

@w

��
wi

�

Di

w

i+1

:= w

i

+ v

i+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L

@w

��
wi

E

Di

is
the average over the ith batch D

i

of the derivative of the objective with respect to w, evaluated at
w

i

.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

A. Krizhevsky et al. DNN for ImageNetL. de Oliveira, M. Kagan, L. Mackey, BN, and A. Schwartzman, JHEP 07 (2016) 069
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37Convolution Filters



(a) (11⇥ 11) convolutional kernels from first layer (b) Convolved Jet Image di↵erences

Figure 9: Convolutional Kernels (left), and convolved feature di↵erences in jet images (right)

We also draw attention to the fact that there is a large diversity in the the convolved representations,
indicating that the DNN is able to learn and pick up on multiple features that are descriptive.

A related way to visualize the information learned by various nodes in the network is to consider
the jet images which most activate a given node. Fig. 10 shows the average of the 500 jet images
with the highest node activation for the last hidden layer of the MaxOut network (the layer before
the classification layer). The first row of images in Fig. 10 show clear two-prong signal-like structure
whereas the second and third rows show one-prong di↵use radiation patterns that are more background-
like. The remaining rows have a variety of �R distances between subjets and have a mix of background
and signal-like features.
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L. de Oliveira, M. Kagan, L. Mackey, BN, and A. Schwartzman, JHEP 07 (2016) 069
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pp collisions at the LHC 
don’t happen one at a time!

the extra collisions are called pileup 
and add soft radiation on top of our jets

this is akin to image 
de-noising - we can 

use ML for that!

Beyond Classification I: Removing Noise



⌘
�

b
ea
m

Leading vertex charged

Pileup charged

Total neutral

Leading vertex neutral
Inputs to NN | {z }

10 filters ⇥2

Figure 1: An illustration of the convolutional neural net architecture. The input is a three-

channel image: blue represents charged radiation from the leading vertex, green is charged

pileup radiation and red is the total neutral radiation. The resolution of the charged images is

higher than for the neutral one. These images are fed into a convolutional layer with several

filters whose value at each pixel is a function of a patch around that pixel location in the

input images. The output is an image combining the pixels of each filter to one output pixel.

– 5 –

…also a natural 
application of 

convolutional NNs!

Strange noise 
because we can 

measure ~2/3 of it 
(charged pileup)

Beyond Classification I: Removing Noise



“Pileup Mitigation with 
Machine Learning”

Corrected Image Mass / True Image Mass

P. Komiske, E. Metodiev, BPN, and M. Schwartz,1707.08600

Beyond Classification I: Removing Noise



Beyond Classification II: Simulation NN

η
z

φ

Training NN’s is slow, 
but evaluation is fast

Physics-based 
simulations of 
jets are slow

What if we can learn to 
simulate jets with a NN?



η
z

φ

Training NN’s is slow, 
but evaluation is fast

Physics-based 
simulations of 
jets are slow

What if we can learn to 
simulate jets with a NN?

noise NN

DNN W’s
Physics W’s
DNN quarks/gluons

Boosted W ⇢ qq’, mW ~ 80 GeV / c2

Image Mass [GeV/c2]

Physics quarks/gluons

M. Paganini, L. de Oliveira, BN,1705.02355
L. de Oliveira, M. Paganini, BN, Comp. and Software for Big Science (2017) 1

Beyond Classification II: Simulation NN
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44And now: Modern Deep NN’s for Generation

DPythiaWhen D is maximally 
confused, G will be 
a good generator Physics-based 

simulator

{real,fake}

G
D

GAN

noise

Generative Adversarial Networks (GAN):  
A two-network game where one maps noise to images 
and one classifies images as fake or real.



+ More Layers for Generation

η
z

φ

What about multiple layers with 
non-uniform granularity and a 

causal relationship?

Not jet images per se, 
but the technology is 

more general than jets!

M. Paganini, L. de Oliveira, 
and BPN 1705.02355



Average Images
Geant4

CaloGAN

M. Paganini, L. de Oliveira, and BPN 1705.02355
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47Timing

Generation Method Hardware Batch Size milliseconds/shower
GEANT4 CPU N/A 1772

1 13.1
10 5.11
128 2.19

CPU

1024 2.03
1 14.5
4 3.68
128 0.021
512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under
various algorithm-hardware combinations.

21

M. Paganini, L. de Oliveira, and BPN 1705.02355



CMYK - 95c / 9m / 0y / 83kPantone - PMS 547U

Logo: Small Color: please use the mix appropriate to your application

Default Typefaces

DEFAULT SAN SERIF TYPEFACE DEFAULT SERIF TYPEFACE

Arial
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890

Rev 09/23/14

RGB - R 0 / G 57 / B 90 

Berkeley Lab Logo Usage

Times New Roman
Regular
Italic
Bold
Bold Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890

Logo: Large

48Conclusions and outlook

0 5 10 15
Translated Azimuthal Angle ϕ

0

5

10

15Tr
an

sla
te

d 
Ps

eu
do

ra
pi

di
ty

 η

ATLAS Simulation Preliminary
Anti-k  R=0.4, 150 GeV < pT < 200 GeV
Tower Constituents

−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15
0.20

Pe
ar

so
n 

Co
rre

la
tio

n 
Co

ef
fic

ie
nt

ATL-PHYS-PUB-2017-017

Light quark efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

id
. p

ro
ba

bi
lit

y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CMS Simulation Preliminary

=13 TeVs

DeepJet

recurrent

convolutional

 = 80-120 GeV
T

pQCD events, 
 > 70 GeV

T
jet p

Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 80 and 120 GeV and using jets with a pT above 70 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.
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R&D cycle is fast; sometimes 
integration can be slow

CMS, ATLAS, LHCb, 
MicroBooNE, NOvA, DUNE, etc. 

are increasing their use of 
DNNs for many applications

embedding + RNN

CNN for dim. reduction

CNN w/jet images

There may be multiple ways 
to get to the same solution

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-017/
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49Conclusions and outlook
DNN classification, regression, 

and generation are powerful 
tools to fully exploit the physics 
program at the LHC & beyond
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The key to robustness is to 
study what is being 

learned; this may even help 
us to learn something new!

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-017/
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