Highlights of the MPGD Japanese workshop (MPGD2017)

S. Narita (Iwate University) RD51 mini week 14-Dec-2017

Japanese MPGD workshop series

Topics :

- Basic study, characterization
- Readout electronics, systems
- Application for HEP, astrophysics, and general purpose

MPGD2017 --- 14th workshop December 1-2, 2017 Iwate University

2004 Kyoto U. 2005 Osaka U. – RCNP 2006 Saga U. 2007 Osaka City U. 2008 Riken 2009 Kobe U. 2010 Yamagata U. 2011 Kinki U. 2012 NiAS 2013 Kyoto U. 2014 Tohoku U. 2015 Hiroshima U. 2016 Kobe U.

~50 participants

21 scientific talks in MPGD2017

Base technology

- µ-PIC, Micromegas, GEM, Capillary plate
- TPC

Applications

- Neutron imaging
- X-ray/γ-ray imaging for astrophysics
- Tracking, calorimeter for HEP
- Dosimeter

<u>Basic study</u>

- New materials
- Machining
- Medium gas for particle detection

Some talks covers multiple topics

Neutron imaging with glass capillary plate

Electrodes (Inconel or Ni-Cr) a) 0.2~2 mm 0ne capillary **Capillary Plate** 1~1000 µm n transmission .α/⁷Li ^{10}B electrode $n+^{10}B\rightarrow \alpha+^{7}Li$ n **⊼**α/⁷Li reflection 10Bd-**D**-Gas multiplication **Scintillation**

Gas scintillation imager

h

Material	Glass capillary
Outer Diameter (mm)	10~100
Package Density (cm ⁻²)	~10 ⁶
Thickness (mm)	0.2~2
Channel Diameter (µm)	1~1000
Open area ratio(%)	60 (80)
Electrode Material	Inconel or Ni-Cr

R.Ito (Yamagata U)

Efficiency: ~4.2 % Position resolution: ~ 1 mm

$\mu\text{-}\text{PIC}$ based neutron imaging detector

J.Parker (CROSS)

Improve position resolution -> reduce the pitch of μ-PIC 400 um -> 215 um

Gain stabilization is also considered

GEM based x-ray polarimeter

M.Okubo (TUS/RIKEN)

Interesting for observing high energy X-rays

E < 8keV : IXPE satellite

E > 8 keV : TPC type polarimeter <- supposed to have high polarization

Track direction of the photoelectron depends on the X-ray polarization

For non-polarized X-ray $M=0.3\pm0.3\%$

GEM for IXPE

(Imaging X-ray Polarimetry Explorer)

IXPE GEM (15mm x 15 mm)-> need to inspect hole shape-> established to pattern recognition tool

Measured gain map

-> found no affection of hole size variation to the gain.

Y. Zhou (TUS/RIKEN)

GEM for TPC polarimeter (30 mm x 78 mm)

GSO (2放射長)

Experiment period : Apr. 1 – May 6, 2018

$\mu\text{-}\text{PIC}$ with high resistive cathode

- Resistive cathode (carbon polyimide 10^{5~7} Ω/sq)
 -> reduce discharge
- Expect high rate capability

Test with 150GeV μ/π beam

- Efficiency
 Anode: ~94%
 Cathode: < 90%
 (decrease @ high gain)
- Position resolution:< 80 um for the cathode direction

Efficiency_muon & pion

DLC electrode

- DLC deposition by sputtering
- The resistivity of the layer can be controlled by changing the thickness
- Can make fine-pattering
- -> expected to be used for high signal rate experiment

X-ray imaging test $Cu K\alpha$ (8 keV)

- Position resolution
 - anode: ~ 190 um, cathode: ~160 um
 - (still considering the misalignment, ...)
- Rate capability

work stably up to 13 MHz/cm²

Aging test of Micromegas for γ -ray irradiation

For HL-LHCK.Matayoshi (Kobe U)expected BG on MM of endcap muon detectorn: 0.1 kHz/cm², γ : 1.5 kHz/cm²In the past experimentHL-LHC 10 yr ... $2M\Omega/sq \rightarrow 5M\Omega/sq$ no significant degradation in the gainHL-LHC 80 yr ... the surface resistivity increased to a few 10 times~20 % down in gain \leftarrow Si composite material might affect

- Tested Si-free (Si-reduced) detector (Dose: HL-LHC 42 yr = 117 mC/cm²)
 - No significant change in the gain and resistivity
 - Efficiency: ~94%
 lower than requirement
 investigating the reason

GEM type gating device

A.Shoji (Iwate U)

For developing ILD-TPC

Demonstration of the PS-TEPC performance

Position Sensitive Tissue Equivalent Proportional Chamber

Measure radiation doses and path length of space radiation particles, and determine the real time LET to asses the radiation risks to crew.

Fiducial volume: 2.6 x 2.6 x 5.0 cm³ μ -PIC: 400 um pitch Strips Anode 64, Cathode 64

Launched: 9th Dec. 2016 Installed on ISS: 14 Dec. 2016 Started operation: 28th Dec. 2016

Observed fluctuation of the count rate at polar and SAA regions <- due to variation of Cosmic Ray flux

Negative-ion TPC with μ -PIC

Directional Dark Matter search

sulfur hexafluoride (SF₆)

H.Ishiura, T.Ikeda (Kobe U)

Can determine absolute z position of track -> allow to make fiducial volume cut in z

-> can remove α -ray BG from GEM/ μ -PIC material.

• Gain measurement for SF₆ gas with Triple GEM system

Low BG μ -PIC

K.Miuchi (Kobe U)

α-ray (most surface layer)
γ-ray, neutron (substrate)

Modify the material and structure of surface layer

-> low α μ -PIC

TABLE 3. ²³⁸U and ²³²Th measurement results using the HPGe detector. The uncertainties listed are statistical errors.

Freon-base RPC

K.Ogawa (Kobe U)

Realize thin gap RPC with time resolution < 10 ps

DLC membrane is deposited by Ar+ beam sputtering (the resistivity can be controlled by the thickness)

To be considered

- surface flatness

- efficiency

Low Temperature Co-fired Ceramic (LTCC) GEM

Optimizing the process

> longer etching time

> adding Au plating process after re-sintering

Gain: ~8000 @ ⊿V~750 V Discharge rate: > 10 counts/min @ ⊿V>700V but not brokendown The presentation files are on the workshop website. https://kds.kek.jp/indico/event/25061/