Micromegas R&D for muon imaging activities at Saclay

Christopher Filosa (CEA/DRF/IRFU/DPhN)

DE LA RECHERCHE À L'INDUSTRIE

MicroMegas at Saclay

2D Readout bulked resistive Micromegas

- 50 x 50 cm² active surface
- 3 strip layers
 - → resistive (X) (482 μ m pitch and 380 μ m strips)
 - \rightarrow Y readout (482 μ m pitch and 100 μ m strips)
 - → X readout (482 μ m pitch and 380 μ m strips)
- Bulk technology
- Resistive ink spread on PCB
 - → Serigraphic process
 - → Integrated resistivity ~ few hundred of $k\Omega$

Genetic multiplexing

Multiplexing layout

particle

Reduction of costs and simplified electronic output

- 1037 strips read by 61 channels (reduction factor 17)
- Doublet of channel are connected to a unique doublet of consecutive strips
- Use signal spread over strips
- Multiplexing factor is adjustable w.r.t. flux inside the detector

Micromegas R&D

Diamond Like Carbon (DLC) Micromegas

- 50 x 50 cm² active surface
- Resistive DLC
 - → Chemical deposition technique
 - → No alignement needed
 - → More homogeneous than strips
 - → Pressed and glued by Rui de Oliveira at CERN
 - → Bulked at Saclay
- Integrated resistivity ~ $50M\Omega$
 - → higher than resistive strips
 - → Clusters' size are expected to be equal in X/Y readout

Characterization of DLC Micromegas Experimental set up (1)

DLC characterised in TomoMu

Experimental set up (2)

DLC characterised in TomoMu

Nb of events on the DLC / Total nb of events

Nb of well reconstructed events on the DLC (Cluster near the reconstructed track)/ Total nb of reconstructed events

DLC Micromegas Serigraphic Micromegas

10

Observable differences between tracking and no tracking efficiency plateau -> Need more investigations

Characterization of DLC Micromegas Cluster size distribution

 Increasing of clusters' size due to the position of Y strips (Charge collection along the resistive strips)

Characterization of DLC Micromegas Cluster size distribution

- → Less spreading
 - → DLC Clusters' size are equal in X/Y

13

Characterization of DLC Micromegas Amplitude distribution S041

- Charge mostly received by upper strips
 - → Factor 3 between Y (up) and X (down) strips

Characterization of DLC Micromegas 2D Map of amplitude

- → Unstuck pillars zone
- Nevertheless, the unstuck zone is still efficient when the HV increases

- No problem with pillars
- Inhomogeneous zone of gain
- Problem during cleaning process
 - → Development bath
 - → Remnant of photoresist film

15

Characterization of DLC Micromegas 2D Map of amplitude

• Nevertheless, the unstuck zone is still efficient when the HV increases

- Still Inhomogeneous zone of gain after alcool
 + karcher
- Deposit of photoresist film ?(change of mesh color observed)

Gas R&D

Problem of outgassing

- PCB outgassing issue
 - → Humidity + gaseous pollutant through the outgassing of PCB
 - → Degradation of gas : Recirculation + purification system
 - → To be tested : Heated process for PCB (à la HARPO) or protected PCB with varnish
 - → New vacuum chamber to make tests

Reducing gas leaking (sensors' box)

- Test of valves + flexible pipes + boxes containing H/P/T sensors
 - \rightarrow 7 sensors, each in independent box
 - \rightarrow 14 days of data taking (not continuously)
 - → Volume = $5*5*2.5 = 62.5 \text{ cm}^3$
 - → Overpressure = 50 mbar
 - \rightarrow Leak = 9.3 10⁻⁴ mL/h < 1 μ L/h

Reducing gas leaking (detector)

- Best detectors = 0.3ml/h
- Idea : Sealed detector to reduce drastically the leak of gas
- Need to controle T
- Electronic control of gas consumption (2 to 3 times less)

Recap

• More R&D on DLC

- → Understand the inefficiency zones which appeared on the DLC (glue, remnant of photoresist ?)
- → Choose between two technologies (serigraphy or DLC)
- → Make sure the spatial and time resolution are improved to plan μ TPC algorithm

• **Prospectives**

- → Build 4 layers telescope with reduced gas leaking + electronic gas management
- → Build 4 layers telescope in a sealed mode (eg: geophysics applications), after outgassing R&D

THANKS

DE LA RECHERCHE À L'INDUSTRIE

Cez