

Update on Chromium GEM studies @ UVa

Kondo Gnanvo

University of Virginia, Charlottesville, VA

RD51 Mini week @ CERN, December 15, 2017

<u>Outline</u>

- ⇒ Cr-GEM stability with high rate X-ray source
- ⇒ Optical and SEM inspections of the Cr-GEM foils
- ⇒ Summary & Future plans

Motivation for Chromium GEM foil (Cr-GEM)

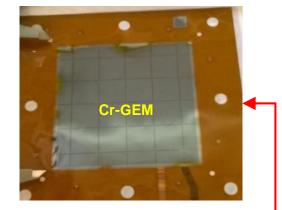
Motivation:

- Of particular interest for the Nuclear Physics community where GEMs are used as tracker in a high background of low energy photon.
- Using Cr-GEM foil lead to 50% reduction of the material of an EIC light weight triple-GEM
- This is because the material in a lightweight triple-GEM is dominated by the Cu of GEM foils

Characteristic of Cr-GEM foil:

 Copper (Cu) clad raw material comes with 100 nm Chromium (Cr) layer between Cu and Kapton, 5µm Cu layers removed, leave only 100 nm residual Cr layers as electrodes, Cr-GEM foils provided CERN PCB workshop

Triple-GEM with standard GEM foil

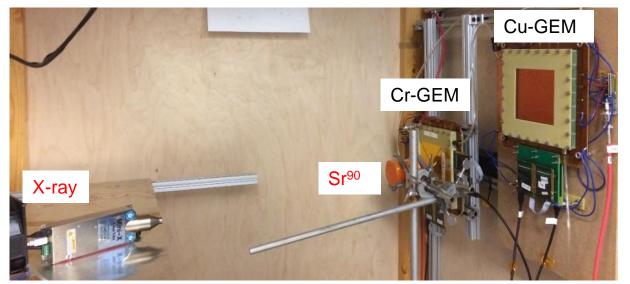

Triple-GEM with Cr-GEM foil

	Quantity	Thickness	Density	Х0	Area	X0	S-Density		Quantity	Thickness	Density	Х0	Area	Х0	S-Density
		μm	g/cm3	mm	Fraction	96	g/cm2			μm	g/cm3	mm	Fraction	96	g/cm2
Window								Window							
Kapton	2	25	1.42	286	1	0.0175	0.0071	Kapton	2	25	1.42	286	1	0.0175	0.0071
Drift								Drift							
Copper	1	5	8.96	14.3	1	0.0350	0.0045	Copper	1	0	8.96	14.3	1	0.0000	0.0000
Kapton	1	50	1.42	286	1	0.0175	0.0071	Kapton	1	50	1.42	286	1	0.0175	0.0071
GEM Foil								GEM Foil							
Copper	6	5	8.96	14.3	0.8	0.1678	0.0215	Copper	6	0	8.96	14.3	0.8	0.0000	0.0000
Kapton	3	50	1.42	286	0.8	0.0420	0.0170	Kapton	3	50	1.42	286	0.8	0.0420	0.0170
Grid Space	r							Grid Space	r						
G10	3	2000	1.7	194	0.008	0.0247	0.0082	G10	3	2000	1.7	194	0.008	0.0247	0.0082
Readout								Readout							
Copper-80	1	5	8.96	14.3	0.2	0.0070	0.0009	Copper-80	1	0	8.96	14.3	0.2	0.0000	0.0000
Copper-350	1	5	8.96	14.3	0.75	0.0262	0.0034	Copper-350	1	0	8.96	14.3	0.75	0.0000	0.0000
Kapton	1	50	1.42	286	0.2	0.0035	0.0014	Kapton	1	50	1.42	286	0.2	0.0035	0.0014
Kapton	1	50	1.42	286	1	0.0175	0.0071	Kapton	1	50	1.42	286	1	0.0175	0.0071
NoFlu glue	1	60	1.5	200	1	0.0300	0.0090	NoFlu glue	1	60	1.5	200	1	0.0300	0.0090
Gas								Gas							
(CO2)	1	15000	1.84E-03	18310	1	0.0819	0.0028	(CO2)	1	15000	1.84E-03	18310	1	0.0819	0.0028
					Total	0.471	0.090						Total	0.235	0.060

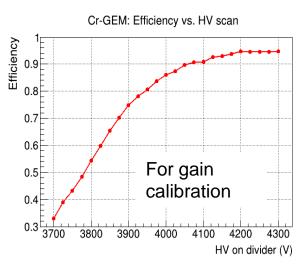
About 50% reduction in the amount of material in a EIC-FT-GEM with Cr-GEM

Standard GEM

50 μm Kapton 100 (200) nm Cr


12/15/2017

RD51 mini week @ CERN



Cr-GEM stability with high rate X-ray source

- Two small GEMs in the X-ray setting: Cr-GEM and standard Cu-GEM (used as reference)
- Sr90 used for HV scan ⇒ rough calibration of the detector gain data from literature

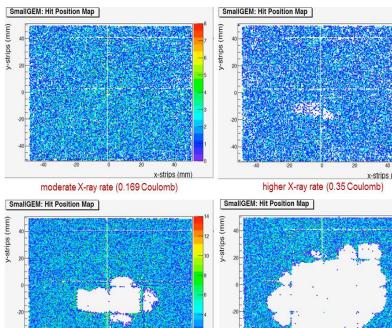
X-ray setup

Test of Cr-GEM Proto I (summer 2015)

- X-ray: V =15 kV, I = 200 μ A \Rightarrow X-ray rate = 12 MHz/cm²
- $HV = 4000 V \Rightarrow 4 \text{ mC/cm}^2 / \text{day for 4 days}$
- Significant damages on GEM response after day #2
- 50% of the dead area after 4 days

Test of Cr-GEM proto II (summer 2017)

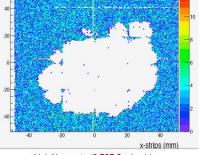
- Proto II: 3rd GEM of proto I foil replaced by a new foil
- X-ray: V =15 kV, I = 50 μ A \Rightarrow particle rate = 3 MHz/cm²
- HV @ 3800 V \Rightarrow 40 μ C/cm² / day for 65 days
- $HV = 3950 V \Rightarrow 300 \mu C/cm^2 / day \text{ for } 30 \text{ days}$
- No significant damage to the chamber


12/15/2017

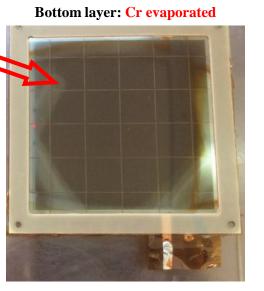
Cr-GEM Proto I with x-ray : Cr Evaporation under high rate

Inspection of Cr-GEM foils after high rate X-ray exposure:

- Dead area appears after 2nd exposure day and keeps increasing
- Cr layer at the bottom of 3rd Cr-GEM (just above readout board almost completely **vanished** ⇒ dark brown color is the Kapton
- Causes of damages unclear:
 - ⇒ small discharges @ high rate or high detector gain
- Two other Cr-GEM foils show no damage ⇒ HV test OK
 - ⇒ They were re-used in proto II

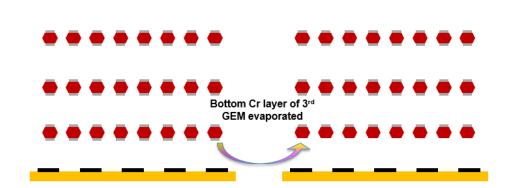


x-strips (mm)

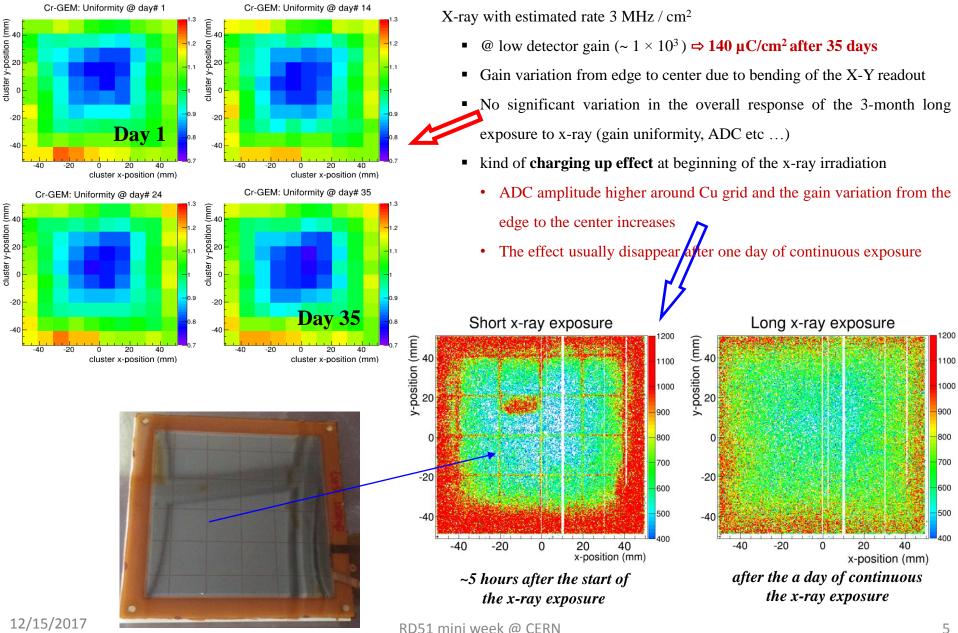


12/15/2017

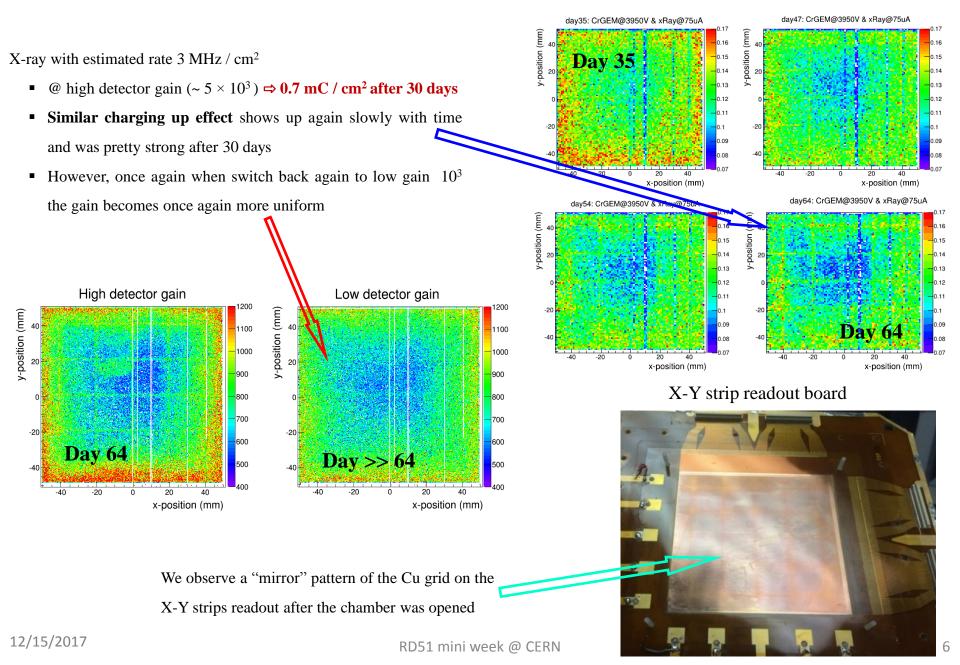
x-strips (m


high X-ray rate (0.727 Coulomb)

Test of Cr-GEM Proto I: photon rate = $12 \text{ MHz} / \text{cm}^2$

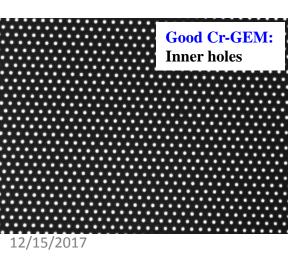

Top side

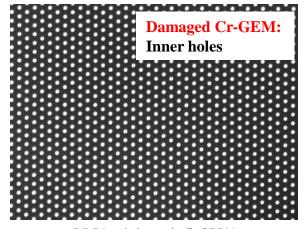
RD51 mini, week @ CERN

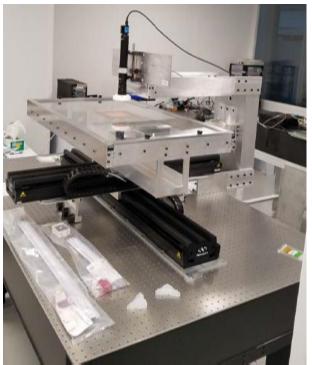

Cr-GEM Proto II with x-ray : charging up effect?

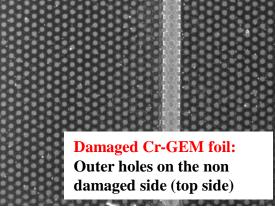
RD51 mini week @ CERN

Cr-GEM Proto II in X-ray: High detector gain vs. low gain

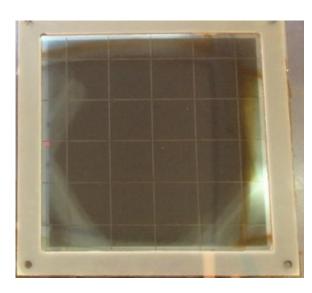

Investigating the Cr "evaporation" of damaged Cr-GEM foil:

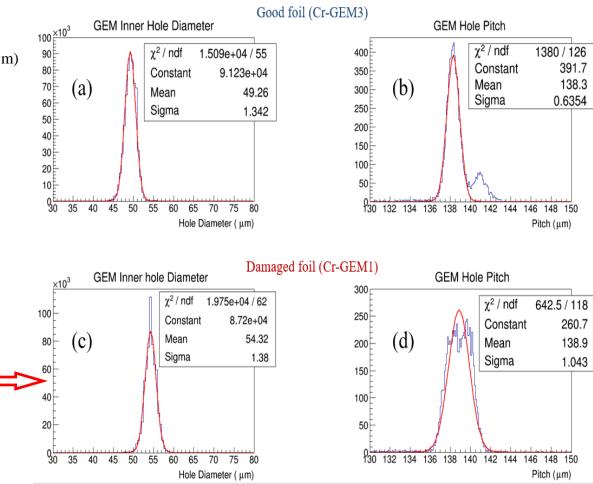

- Optical microscope scan @ Temple University
- SEM & FIB measurement @ CERN


Cr-GEM foil: Optical Microscope scanning @ Temple U.


- GEM CDD Scanner Facility at Temple U. (*Thanks B. Surrow & M. Posik*)
- BTW: suitable large area GEM (1 m size)
- We were able to scan 2 Cr-GEM foils (one damaged and one good foil) and compute inner holes and pitch sizes with T.U. setup
- Extracting Outer hole size turns out to be very challenging:
 ⇒ Poor contrast from the back light transmission ⇒ poor image resolution
- Automated software run the scan of the full active area.
- Scan of a 10 cm × 10 cm GEM is performed in about 2 hours
- Analysis: Algorithm is available to compute the hole diameter and pitch size

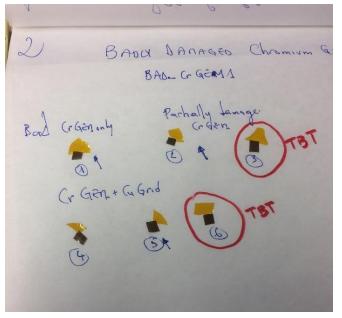
GEM CCD Scanner





Cr-GEM foil: Optical Microscope scanning @ Temple U.

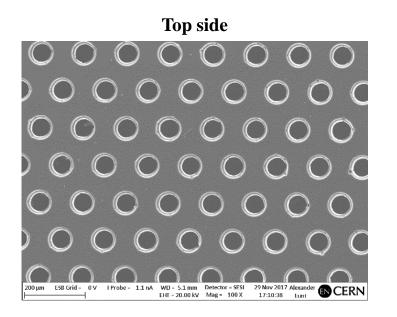
- Holes parameters for both damage and good foil are well within the specs for a standard GEM foil
- Inner hole diameter: Narrow distribution (σ ~1.4 µm)
 ⇒ Good uniformity across the entire active area
 ⇒ no Kapton etching for the damaged Cr-GEM
- Hole pitch: ~ 138 μm
 - \Rightarrow Small bump at 141 µm for good Cr-GEM
 - ⇒ Wider distribution for the damaged Cr-GEM but could just be measurement artefacts

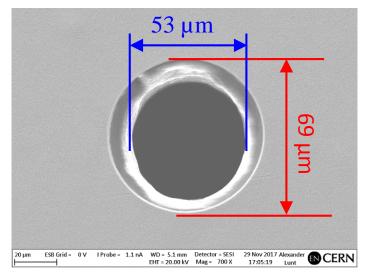

Cr-GEM foil: SEM & FIB measurement @ CERN

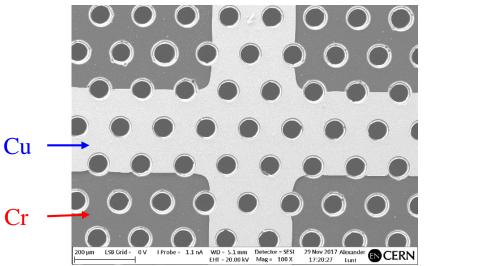
SEM and FIB analysis of Chromium GEM done at CERN (end Nov 2017)

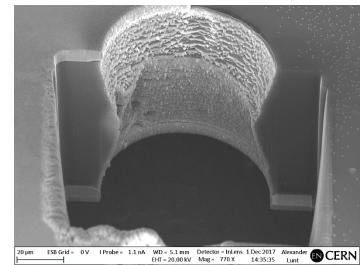
- Measurement performed by Dr Alexander Lunt from Material, Metrology and NDT group (CERN EN/MME/MM)
 - Great thanks to Alexander for the nice and many SEM pictures and the availability
 - Great thanks to Eraldo for taking care of the logistics and request paperwork at CERN
- Primary goals of the SEM measurement was to:
 - investigate the damages that led to the evaporation of Cr layer at the bottom of Cr-GEM1
 - Look at potential Kapton etching possibility
 - Measure the thickness of the Cr layer
 - and of course the unexpected

Samples from 4 GEM foils sent to CERN:

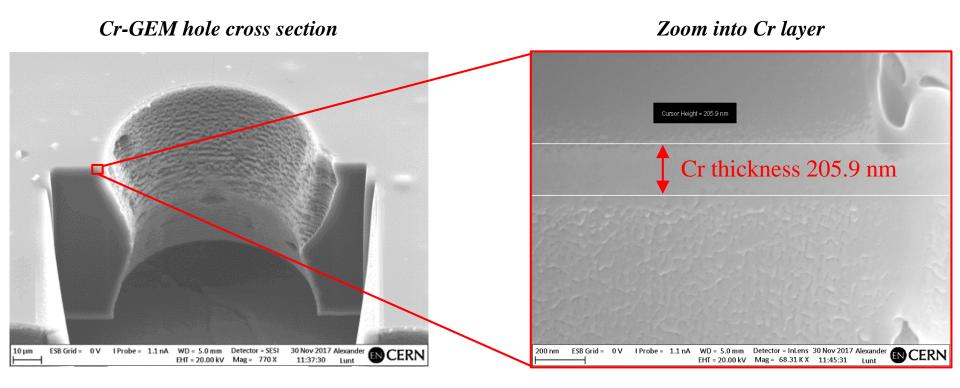

- Cr-GEM1: damaged foil used as 3rd GEM in proto I
- \Rightarrow high rate.
- Cr-GEM2: 3rd GEM foil used in proto II, replace Cr-GEM1
- \Rightarrow long exposure
- Cr-GEM3: GEM foil used in both proto I and proto II
- \Rightarrow high rate and long exposure.
- **std-GEM:** standard GEM foil with 5 µm electrode


Picture of samples for Cr-GEM1

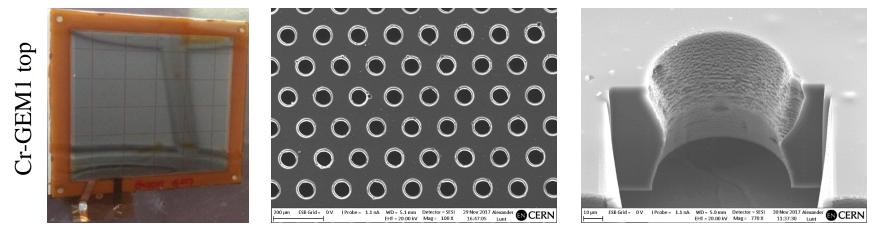

Sample Cr-GEM4: SEM & FIB measurement @ CERN



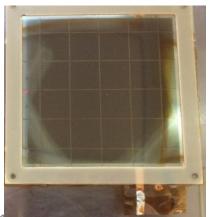
Hole dimensions

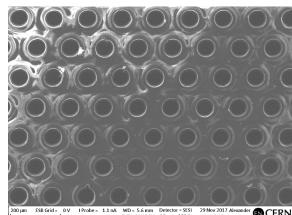

Around the Cu-grid area

Sample Cr-GEM4: Thickness of the Cr layer

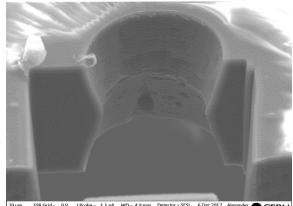


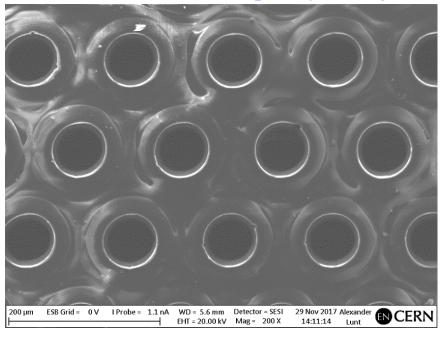
Cr layer $2 \times$ thicker than original assumption



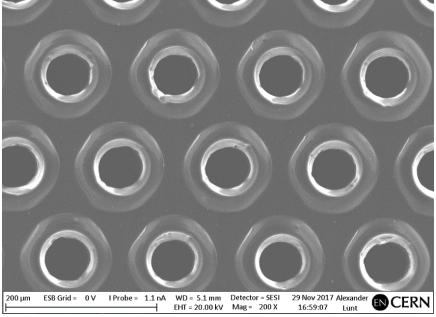

Sample Cr-GEM1: damaged GEM

- SEM images of the top and bottom side of the heavily damaged Cr-GEM1 foil.
- As expected, SEM images of top side are high quality with holes dimensions configuration looks like normal GEM foil.
- Pictures of the bottom side of the foil appears severely distorted \Rightarrow bad image resolution
 - Cross section of the holes: looks as if the Cr layer melted with some other material but the Kapton looks fine



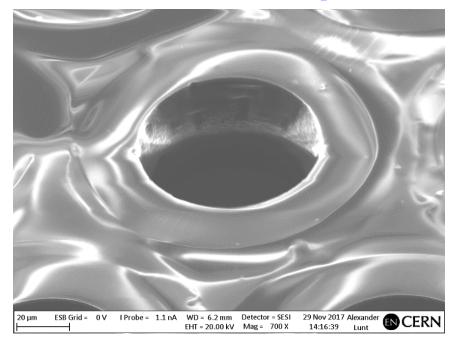


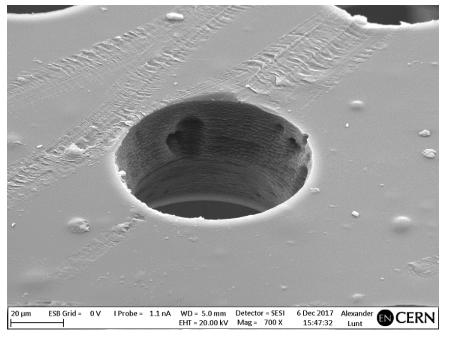
20 µm ESB Grid= 0 V I Probe= 1.1 nA WD = 4.8 mm Detector = SESI 6 Dec 2017 Alexander SCERN


Samples Cr-GEM1 & Cr-GEM2

- Cr-GEM2 (right) show similar issue but the distortions are far less pronounced are more localized around the holes as opposed to the Cr-GEM1 where it spreads over the entire active area.
- Cr-GEM2 was irradiated in less harsher environment but was irradiated for a long period of time
- That is probably why we didn't see any degradation in the X-ray data
- The overall structure of Cr-GEM2 seems preserved with probably Cr removed only in a small area around the holes.

Cr-GEM1 bottom: completely damaged


Cr-GEM2 Bottom: partially damaged


Cr-GEM1: SEM without vs. with conductive tape

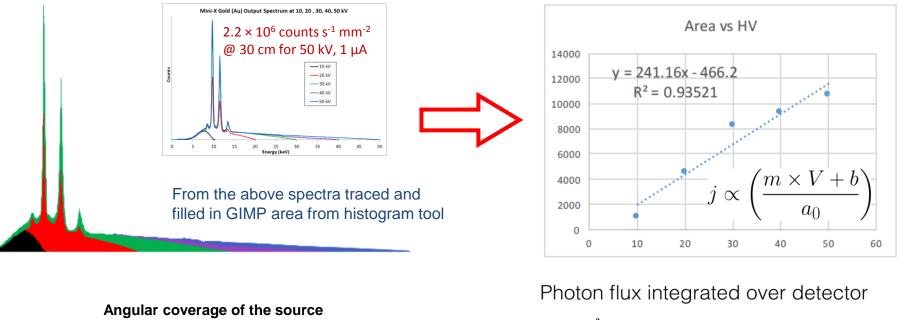
- These distortions are in fact artefacts from the SEM measurement of a non metallic surface
- Well know issue of charging of dielectric sample when bombarded with the intense SEM beam
- **Problem:** Charging up disturbs the electric field around the surface under probe ⇒ poor resolution SEM image
- Solution: coating the surface with a thin conductive tape (a few nm of Au) before the SEM measurement

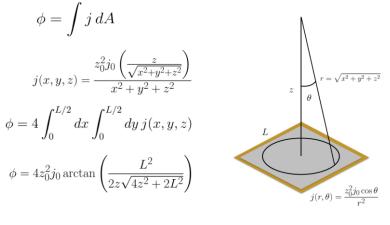
Cr-GEM1: without tape

Cr-GEM1: with conductive tape

This is the confirmation that the Cr layer effectively vanishes at the bottom of these samples

Summary & Future Plans


- We performed extensive test of triple Cr-GEM detector with X-ray source
- In high rate environment and at high detector gain, we observe a degradation of the bottom Cr electrode of the 3rd GEM foil ⇒ "Evaporation" of the Cr layer
- Effect not observed for the top layer of this foil or on other 2 Cr-GEMs even after a sustained long term irradiation
- We also observed a "strange" charging up effect still under investigation
- Optical scan and SEM measurements of the GEM foils confirm the evaporation of Cr layer but reveals no Kapton etching of the damaged foils
- We are pursuing the studies of Cr-GEM detectors ⇒ plan is to test a Cr-GEM without Cu grid in similar condition to understand better the charging up effect
- Any suggestions or hints related to Cr-GEMs are welcomed



Back up

X-ray setup @ UVa: photon flux & Integrated charges

The flux proportional to the area of the spectrum

 $j = \left(\frac{I}{I_0}\right) \left(\frac{m \times V + b}{a_0}\right) \left(4\frac{z_0^2}{L^2} \arctan\left(\frac{L^2}{2z\sqrt{4z^2 + 2L^2}}\right)\right) e^{-\mu(z-z_0)} j_0$

Electron flux from photon flux Attenuation length*

	Auchuuu	on lengen			
Kapton	Aluminum	Copper	Argon		
3000.0	200.0	6.6	100000.0		
				Attenuation in	Remainder
Region	Material	Length	Att. length	this layer	after this layer
Gas window	Aluminum	5	200	97.53%	97.53%
Cas window	Kapton	50	3000	98.35%	95.92%
Gas inlet	Argon	3000	1000000	99.70%	
					95.63%
Drift	Kapton	50	3000	98.35%	
cathode	Copper	5	6.56	46.66%	43.89%
Drift Region	Argon	3000	1000000	99.70%	
				-	43.76%
	Copper	5	6.56	46.66%	20.42%
GEM 1	Kapton	50	3000	98.35%	20.08%
	Copper	5	6.56	46.66%	9.37%
Transfer	Argon	2000	1000000	99.80%	9.35%
	Copper	5	6.56	46.66%	4.36%
GEM 2	Kapton	50	3000	98.35%	4.29%
	Copper	5	6.56	46.66%	2.00%
Transfer	Argon	2000	1000000	99.80%	2.00%
	Copper	5	6.56	46.66%	0.93%
GEM 3	Kapton	50	3000	98.35%	0.92%
	Copper	5	6.56	46.66%	0.43%
Induction	Argon	2000	1000000	99.80%	0.43%
Readout					

ttenuation $\prod e^{-\Delta x_i/l_i}$

50% gone by drift region

0.3% xray 🗰 e-

300 e-/ion pair per

Amptek Min	i-X Parameters	Geometry		
HV (kV)	Current (µA)		Distance (cm)	GEM side
15	50		72	10

	HV (linear f	it) HV (ra	tio 20/50)	Current
tors	0	.29	0.43	50.00
fact	z'=z-z0	Flux (H	Hz) / j_0	
scaling factors		42	0.01	
	mu/rho	rho		attenuation
		5.1	0.0016	0.709836938

Photons at GEM surface						
Hz/mm^2	MHz/cm^2					
6.84E+04	6.840					

e-/ion pairs in drift					
Hz/mm^2	MHz/cm^2				
26976.861	2.698				

Assuming 11 keV photons and attenuation lengths from http://henke.lbl.gov/optical_constants/atten2.html

RD51 mini week @ CERN