VMM and the SRS - update

Michael Lupberger (CERN)

Presentations at the last Collaboration meeting in September

Lara Bartels: Analysis of VMM3 test beam data

→ Detector with 3 VMM3 hybrids in SPS beam

Manuel Guth: VMM3 Slow Control Software

→ New software to control the SRS + VMM

Me: VMM and the SRS - update

- → General update: Master/Slave, hybrid design, powering
- → need additional ADC on hybrid for calibration and online monitoring
- → finalise design of hybrids and DCards

What happened since September

New student from University of Bonn for about 2 months

→ Lucian, working on VMM cooling (see his presentation) and test beam analysis

RD51 test beam in October

→ continue VMM3 tests at SPS beam, four hybrids (see Dorotheas presentation)

Hybrid firmware change for CKBC (coarse time measurement)

→ high (logic 1) has to be < 20 ns and > 12.5 ns, otherwise no correct time measurement

I2C test of new ADC for hybrid

→ understand and test I2C implementation in current firmware, test if an ADC can be operated on the hybrid

BrightnESS test beam in December

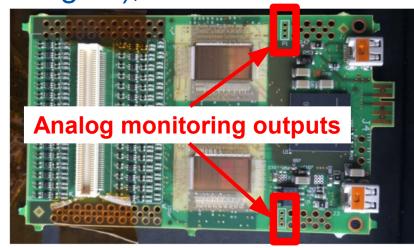
→ first neutron test beam with VMM3 hybrids (four) and better software (see Mortens presentation)

CKBC firmware change

High (logic 1) has to be < 20 ns and > 12.5 ns

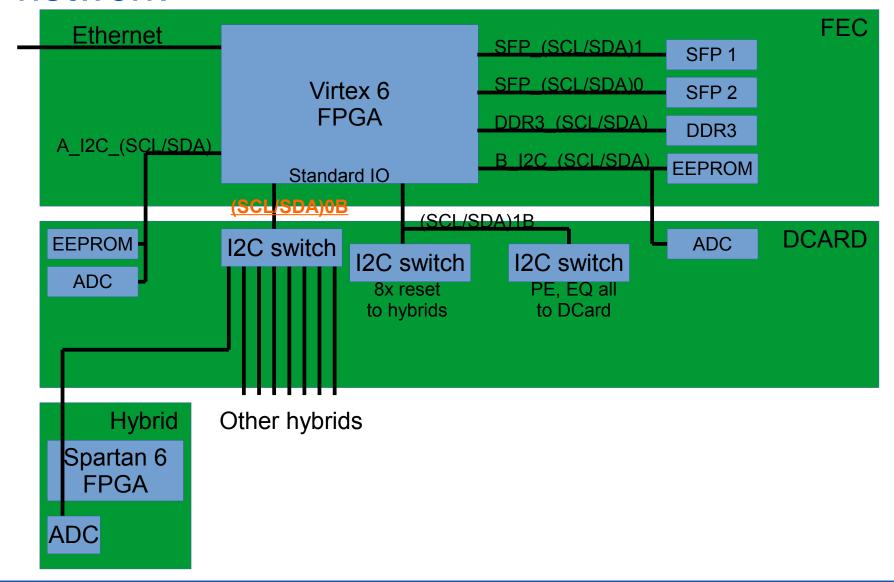
- CKBC can be set: (2.5, 5, 10, 20, 40, 80, 160, 160 inv.) MHz
- With the requirement: CKBC ≥ 80 MHz not possible
- Use high of 15.625 ns for all clocks up to 40 MHz
 - → asymmetric clock

```
40 Mhz: 9.375 ns 15.625 ns 20 Mhz: 34.375 ns 15.625 ns
```

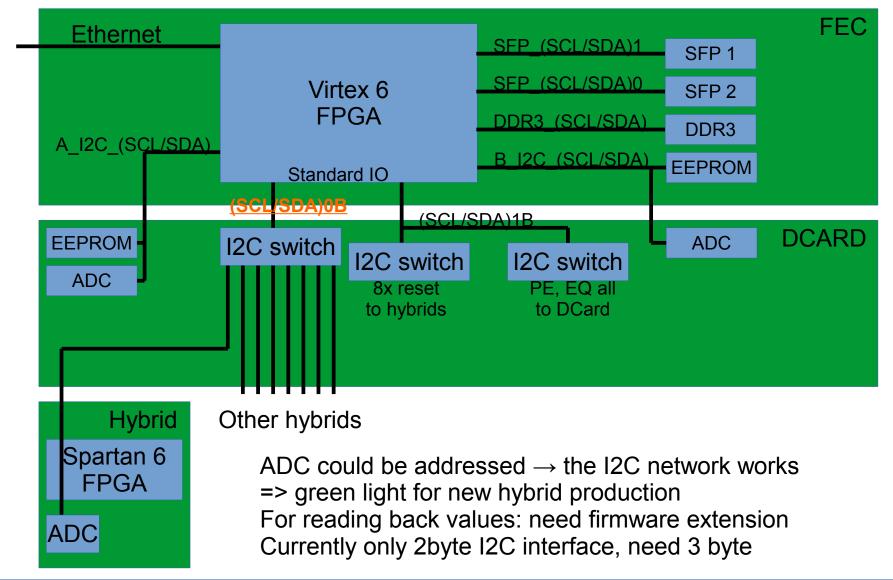

. . .

New ADC

Necessary to read monitoring outputs


- M0: Can be set to output global threshold DAC, pulser DAC, temperature sensor level, band-gap reference and for every channel: baseline (and signal), threshold level
- tdo: baseline and ramp
- pdo: baseline and pulse amplitude

For fast signals (ramp, pulse), ADC is to slow
We need it for calibration of baselines and thresholds



I2C network

I2C network

How you can support the SRS+VMM development

Send a student! (master/PhD, should stay at least for two months)

Good experience so far:

- Freddy Fuentes (Universidad Antonio Nariño, Bogotá)
- Lara Bartels (University of Göttingen, CERN summer student)
- Manuel Guth (University of Freiburg, CERN summer student)
- Lucian Scharenberg (University of Bonn)

Win-win-win situation:

You: Student brings back experience with operating the SRS + VMM setup

We+You: Student advances the project

Student: Stay at CERN

How you can support the SRS+VMM development

Send a student! (master/PhD, should stay at least for two months)

Proposed projects:

- 1. Advance slow control: implement automated calibration, extend user friendliness
- → preferably stay of 6 months, should know C++, Qt, also work in the lab for testing
- 2. Implement useful triggered readout in firmware
- → at least 2 months with knowledge of FPGA programming (> 3 month only basic knowledge)
- 3. Improve readout speed from VMM to Spartan-6 FPGA
- → at least 2 months with knowledge of FPGA programming (> 3 month only basic knowledge)
- 4. Understanding the VMM readout and documentation for users
- → no prior knowledge required
- 5. VMM hybrid characterisation for user references
- → some experience with working in the lab, using instruments

Summary

SRS + VMM project is advancing very well

- → see other talks
- Four test beams with VMM3 hybrids
- Cooling is addressed
- Very fruitful exchange with the ATLAS NSW electronics team, e.g. for CKBC issue (thanks George for all your input)
- New hybrid with ADC will go in production soon
- Support from interested groups is appreciated

