# First results of imaging properties and testbeam for Resistive $\mu\text{-PIC}$

Atsuhiko Ochi, Fumiya Yamane, Yusuke Ishitobi, Keisuke Ogawa, Kohei Matayoshi Kobe University

**RD-51** 



μ-PIC with resistive cathode and capacitive readout

Detector design

All cathodes are made from carbon-polyimide

- Pickup electrodes are lied under cathodes and insulator
- We have two dimensional signals







- Cathode signal on oscilloscope is inverted
- Two dimensional signal is induced on opposite sign.
- Not charge shareing.

## Main R&D target

- For ATLAS muon tagger (High eta muon detector)
  - Proposed for Phase II upgrade 2023~
  - Need high position resolution ~ 0.1mm
  - BG rate  $> 10 MHz/cm^2$  (HIP, gamma) @  $\eta = 4.0$
- Rate tolerant
- 2 dimensional readout needed
- Muon TDR for phase II has just been approved
  - Four technology for muon tagger are described:
    - μ-PIC
    - Embedded MM
    - µ-RPWELL
    - Silicon



#### Resistive electrodes with DLC

- On beginning of 2013, we have developed resistive electrodes by DLC
  - Initially, it was developed for ATLAS MM resistive foils
  - Fine micro-patterning (um order) available
    → applying it for u-PIC



Photo resist (reverse pattern of surface strips)

Substrate (polyimide)

Carbon

Substrate (polyimide)

Developing the resists

Substrate (polyimide)

# Prototype design

- To adopt SRS readout
  - Cathode signal is read by induced charge
  - For anodes, bias resister and coupling capacitor are needed for each channel.
- CR parts correspond to 512 strips are all put in the μ-PIC board





# Signal from anode and cathode

- <sup>55</sup>Fe
  - Gas:  $Ar:C_2H_6 = 90:10$
  - Both Anodes and Cathode signal found
- Operation voltage parameter
  - Both anodes and cathode (resistive) can be applied HV, while pickup electrodes are 0V.

We can study to avoid the charge-up effect







# Testbeam of 150GeV $\mu/\pi$ (SPS H4 beamline)

- Tracking test for MIP
- Beamtime: 9-16 October, 2017
- CERN-SPS/H4 (RD51 line)
- $\rightarrow$  150GeV/c  $\mu$ / $\pi$  (~4sec./spill)
  - Muon: ~10⁵/spill, ~8cmx8cm, 390Hz/cm²
  - Pion: ~3x10<sup>5</sup>/spill, ~1cmx1cm or ~1cmx6cm, 75kHz/cm<sup>2</sup> or 12.5kHz/cm<sup>2</sup>
- Detectors:
  - Trigger: Plastic scintillator x2
  - Telescope: Tmm (2D MM, 250umpitch, 10x10cm)
  - Test chambers: Resistive u-PIC x4, Paddy x 2
- U-PIC operation conditions
  - $\rightarrow$  Gas: Ar 93% + CO<sub>2</sub> 7% or Ar 70% + C<sub>2</sub>H<sub>6</sub> 30%
  - Readout: SRS with APV25







# 2D hitmap (Muon run)







- Hit position:centroid of mass= Σ(x\*qmax)/Σqmax
- (qmax means maximum ADX value



### 2D hitmap (Pion run)

Squeezed beam and deforcused (Y axis) beam



#### Charge distribution over the strips



- The charge will be distributed on resistive strips (plane).
- There are no major differences of signal spread between X and Y on  $\mu$ -PIC.
- For Micromegas, Y-axis readouts are spread due to charge dispersion along the resistive strips.

# Efficiency for muons

- Tracking efficiency using muon
  - Those are preliminary results.
  - Efficiency =(uPIC^Tmm2^Tmm5)/(Tmm2^Tmm5)
  - Maximum efficiency is 94% in both Ar/CO2 and Ar/C2H6
  - At least 2% of efficiency loss are caused from dead strips.
  - Anode shows plateau of efficiency in higher operation voltage, however, cathode shows degradation of it. → Under investigation



#### Position resolution (muon)

- Residual distributions are measured from two telescope MMs. (Doesn't including MM's resolution)
  - Anode: 137um, Cathode: 109um were obtained as resolution.





Using self residual with two µ-PICs, we found 80 µm of resolution minimum.

# Imaging test (X-ray)

- X-ray 2D images were taken in RD51 labo.
  - November, 2017
- SRS with random trigger is used for data taking
  - Signal efficiency ~ 0.1%!
- Operation condition:
  - Gas: Ar 93% + CO2 7%
  - V\_anode = +280V
  - V\_cathode = -270V
  - V\_drift = -770V (gap=5m
  - X-ray: 16kV, Cu target





Imaging samples







#### Position resolutions for imaging

Knife edge method



#### Operation tests in intense X-ray

Direct collimated beam from XG was irradiated to detector.

Relative X-ray intensity was controlled by XG current

0.03mA → 3mA

 X-ray intensity is estimated by event appearance rate of SRS event frame (~500nsec)

Relative gain of chamber is estimated by current monitor of anode HV.

No significant gain drop found up to 13MHz/cm<sup>2</sup>







# Summary

- Performance of 2-dimensional resistive µ-PIC has been measured using H4 testbeam and X-ray generator
- Our preliminary results show very good 2D position resolutions (137μm/109μm) and efficiency (94%) for MIPs.
- > 2D X-ray images were taken with good quality (189µm/158µm of position resolution)
- No significant gain drop more than 10MHz/cm<sup>2</sup> X-ray irradiation
- Those results meet the requirements for higheta muon detector in HL-LHC.

