Progress Report on the multipad PICOSEC

MCP: The time reference devise

Spyros Eust. Tzamarias - RD51 Open Lectures

The PICOSEC PADs

Pad 1

Pad 2

Pad 3

Charge Distributions

Inner Ring:Track Impact Parameter < 2mm

4

Gain Equalization (?)

PICOSEC Single PAD Time Resolution

Use the timing characteristics to check the charge scaling Estimate the mean signal arrival time and the timing resolutions in bins of the e-peak charge

Evaluate the dependence of the mean arrival time and the timing resolution on the e-peak size, using the raw and the scaled charge.

The observed difference in the charge distributions could result either from photocathode 12/13/17 inhomogeneities or from drift field distortions of

e-peak Charge (pC)

e-peak Charge (pC)

Combine the timing information from adjacent PADs A simple exercise

•Concentrate on tracks with impact points in the area between PADs 1 and 2

•Estimate the muon arrival time using the e-peak signal of each PAD (single PAD timing).

•Use the parameterizations, expressing the timing resolution and SAT as functions of the epeak charge, to combine the two timing estimations

12/13/17

The weighted average of the two timing information almost recovers the optimum timing resolution

